B.Tech

CURRICULUM AND SYLLABUS

(CHOICE BASED CREDIT SYSTEM)
REGULATION - 2018

DEPARTMENT OF INFORMATION TECHNOLOGY

KALASALINGAM

(DEEMED TO BE UNIVERSITY)

Under sec. 3 of UGC Act 1956. Accredited by NAAC with "A" Grade

Anand Nagar, Krishnankoil - 626126. Srivilliputtur (Via), Virudhunagar (Dt), Tamil Nadu | info@kalasalingam.ac.in | www.kalasalingam.ac.in

B.TECH INFORMATION TECHNOLOGY CURRICULUM AND SYLLABUS

(For the Students Admitted from the Academic Year 2018-19 Onwards)

B.TECH

INFORMATION TECHNOLOGY

CURRICULUM AND SYLLABUS

REGULATION 2018

KALASALINGAM ACADEMY OF RESEARCH AND EDUCATION

VISION

To be a Center of Excellence of International Repute in Education and Research

MISSION

To Produce Technically Competent, Socially Committed Technocrats and Administrators through Quality Education and Research

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

To become a centre of excellence in the field of Information Technology through quality education and research

MISSION

To provide high quality technical education through effective curriculum and innovative teaching to meet industry need.

To inculcate ethically and socially committed information technology professionals by value added courses.

To provide state-of-the-art learning facilities for students and faculties to investigate, apply and transfer knowledge.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO-1:** The graduates are trained to gain employment as an IT professional and to pursue higher studies to cater the global needs.
- **PEO-2:** The graduates could comprehend, analyze, design and create novel products and technologies that provide solution to real world problems.
- **PEO-3:** The graduates acquire multidisciplinary knowledge with ethical standards, effective communication skills and management skills to work as part of teams on all diverse professional environments.

ABET STUDENT OUTCOMES (SO)

- **SO1.** Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- **SO2.** Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- **SO3.** Communicate effectively in a variety of professional contexts.
- **SO4.** Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.

- **SO5.** Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- **SO6.** Identify and analyze user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems.

Table 1: PEOs consistency with Mission of the Department

Key Components in Department Mission	PEO1	PEO2	PEO3
Quality Education	✓	✓	✓
Research	✓	✓	-
Social Commitment, Ethical Practices	-	✓	✓
Innovative Skills	✓	✓	✓
Communication Skills (Meet Industrial and Social expectations)	✓	✓	✓

Table 2: Curriculum Contribution towards attainment of PEOs

Course Component	Number of Credits	PEOs
Basic Science and Mathematics	25	PEO1
Humanities and Social Science	3	PEO3
Soft Skills	3	PEO3
Basic Engineering	24	PEO1
Core Courses	48	PEO1, PEO2, PEO3
Community Service Project	3	PEO1, PEO2, PEO3
Project Work	10	PEO1, PEO2, PEO3
Professional Elective	18	PEO1, PEO2, PEO3
Open Elective	18	PEO1, PEO2, PEO3
Humanities Elective	6	PEO3
Internship/ Industry Training	2	PEO1, PEO2, PEO3
Total	160	

I. Basic Sciences and Mathematics

S.	Course Code	Course Name	Type	L	T	P	Credits
1.	PHY18R174	Physics –Semi conductor physics	IC	3	1	2	5
2.	CHY18R171	Chemistry	IC	3	1	2	5

S.	Course Code	Course Name	Type	L	Т	P	Credits
3.	MAT18R101	Calculus and Linear Algebra T 3 1		1	0	4	
4.	4. MAT18R102 Multiple Integration, Ordinary Differential Equations and Complex Variables		Т	3	1	0	4
5.	MAT18R202	Probability and Statistics	Т	3	1	0	4
6. BIT18R101		Biology for Engineers	Т	3	0	0	3
Total							25

II. Humanities and Social Science

S.	Course Code	Course Name	Type	L	T	P	Credits
1.	HSS18R151	English for Technical Communication	TP	2	0 2		3
2.	HSS18R101	Soft Skills – I	T	1	0	0	1
3.	HSS18R102	Soft Skills – II	T	1	0	0	1
4.	HSS18R201	Soft Skills – III	T	1	0	0	1
5.	HSS18R0XX	Humanities Elective – I	T	3	0	0	3
6.	HSS18R0XX	Humanities Elective – II	T	3	0	0	3
Total							12

A. **Humanities Electives**

S.	Course Code	Course Name	Type	L	T	P	Credits
1.	HSS18R001	Management Concepts and Techniques	T	3	0	0	3
2.	HSS18R002	Marketing Management	T	3	0	0	3
3.	HSS18R003	Organizational Psychology	T	3	0	0	3
4.	HSS18R004 Project Management		T	3	0	0	3
5.	HSS18R005	Stress Management and Coping Strategies	Т	3	0	0	3
6.	HSS18R006	Economics for engineers	T	3	0	0	3
7.	HSS18R007	Human Resource Management and Labour Law	Т	3	0	0	3
8.	HSS18R008	Entrepreneurship Development	T	3	0	0	3
9.	HSS18R009	Cost Analysis and Control	Т	3	0	0	3

S.	Course Code	Course Name	Type	L	T	P	Credits
10.	HSS18R010	SS18R010 Product Design and Development		3	0	0	3
11.	HSS18R011	R011 Business Process Reengineering		3	0	0	3
12.	12. HSS18R012 Political Economy		Т	3	0	0	3
13.	HSS18R013	Professional Ethics		3	0	0	3
14.	HSS18R014	Operations Research	T	3	0	0	3
15. HSS18R015 Total Quality Mana		Total Quality Management	T	3	0	0	3
16.	HSS18R016	Advanced Softskills	Т	3	0	0	3

III. Basic Engineering

S.	Course Code	Course Name	Туре	Pre requisite	L	Т	P	Credits
1.	EEE18R172	Basic Electrical Engineering IC Nil		Nil	3	1	2	5
2.	2. MEC18R151 Engineering Graphics and Design		TP	Nil	3	0	2	3
3. CSE18R171 Programming for Problem Solving		IC	Nil	3	1	2	5	
4.	4. MEC18R152 Engineering Practice		TP	Nil	3	0	2	3
5.	ECE18R220	Principles of Signals and Systems	T	Nil	3	0	0	3
6. INT18R171		Digital Principles and System Design	IC	Nil	3	1	2	5
Total								24

IV. Program Core

A. Core Courses

Sl.	Course Code	Course Name	Type	Pre- requisite/ Co-requisite	L	Т	P	C
1.	CSE18R174	Computer Architecture and Organization	IC	Nil	3	0	2	4
2.	CSE18R273	Operating Systems	IC	CSE18R174	3	0	2	4
3.	INT18R201	Web Technology	T	Nil	3	1	0	4
4.	INT18R271	Data Structures and Algorithms	IC	CSE18R171	3	1	2	5
5.	INT18R272	Analog and Digital Communication	IC	Nil	3	0	2	4

Sl.	Course Code	Course Name	Туре	Pre- requisite/ Co-requisite	L	Т	P	C
6.	6. INT18R273 Object Oriented Programming IC CSE18R171		CSE18R171	3	0	2	4	
 7. INT18R274 8. INT18R251 		Principles of Digital Signal Processing	IC	ECE18R220	3	0	2	4
		Microcontrollers & Embedded Systems	TP	Nil	3	0	1	3.5
9.	CSE18R371	Computer Networks	IC	CSE18R273	3	1	2	5
10.	INT18R311	Artificial Intelligence	T	Nil	3	0	0	3
11.	INT18R371	Database Management Systems	IC	Nil	3	0	2	4
12.	12. INT18R359 Software Engineering TP		Nil	3	0	1	3.5	
	1							

B. Community Service Project

	S.	Course Code	Course Name	Credits
ſ	1.	INT18R399	Community Service Project	3

C. Project Work

S.	Course Code	Course Name	Credits
1.	INT18R498	Project Work	2
2.	INT18R499	Project Work	8

V. <u>Elective Courses</u>

A. Professional Electives (Minimum 5 Courses)

(3.5 Credits *4) + (3 Credits * 1) **or** (4 Credits * 2) + (3.5 Credits *2) + (3 Credits * 1) **or** (4 Credits * 3) + (3 Credits * 2)

Course Code	Course Name	Туре	Pre- requisite/	L	Т	P	C
	000000000000000000000000000000000000000	- J P •	Co-			_	
PROFE	SSIONAL ELECTIVES - COMPUT	L FER PRO	requisite GRAMMING	ST	REA	M	
INT18R351	System Software	TP	CSE18R174	3	0	1	3.5
INT18R301	Object Oriented Analysis and Design	T	Nil	3	0	0	3
INT18R352	Design and Analysis of Algorithms	TP	INT18R271	3	0	1	3.5
INT18R360	Data Analysis Using Python	TP	CSE18R171	3	0	1	3.5
INT18R361	Data Science Using R Programming	TP	INT18R371	3	0	1	3.5
INT18R451	Component Based Technology	TP	INT18R273	3	0	1	3.5
INT18R401	Principles of Compiler Design	T	CSE18R171	3	1	0	4
INT18R402	Game Programming	T	CSE18R171	3	1	0	4
INT18R452	Programming with Open Source Software	TP	CSE18R171	3	0	1	3.5
INT18R453	Multimedia and Computer Graphics	TP	INT18R271	3	0	1	3.5
INT18R454	C# and .NET Programming	TP	INT18R273	3	0	1	3.5
PROFE	ESSIONAL ELECTIVES - SOFTW	ARE MA	NAGEMENT	STF	REA	M	
INT18R353	Data Warehousing and Mining	TP	INT18R371	3	0	1	3.5
INT18R354	Advanced DBMS	TP	INT18R371	3	0	1	3.5
INT18R302	Information Storage Management	T	INT18R371	3	1	0	4
INT18R355	Data Analytics	TP	INT18R371	3	0	1	3.5
INT18R303	Software Quality Assurance	T	INT18R359	3	0	0	3
INT18R304	Mobile Application Development	T	INT18R273	3	1	0	4
INT18R403	Enterprise Resource Planning	T	Nil	3	0	0	3
INT18R404	Service Oriented Architecture	T	CSE18R174	3	0	0	3
	NAL ELECTIVES - EMBEDDED A						
INT18R305	Mobile Communication and Computing	T	INT18R272	3	1	0	4
INT18R306	Information Coding Techniques	T	INT18R272	3	1	0	4
INT18R307	Bluetooth Technology	T	CSE18R371	3	1	0	4
INT18R405	Wireless Sensor Networks	T	CSE18R371	3	1	0	4
ECE18R330	Digital Image Processing	T	INT18R274	3	0	0	3
INT18R406	Real Time Systems	T	CSE18R273	3	0	0	3
INT18R407	Internet of Things	T	CSE18R371	3	1	0	4

PROF	ESSIONAL ELECTIVES - NETWO	ORK MA	NAGEMENT S	STR	EA	M	
INT18R356	Network Design Security and	TP	CSE18R371	3	0	1	3.5
	Management						
INT18R308	Information Security	T	Nil	3	1	0	4
INT18R357	Mobile Networks	TP	CSE18R371	3	0	1	3.5
INT18R309	Wireless Application Protocol	T	CSE18R371	3	0	0	3
INT18R408	High Performance Networks	T	CSE18R371	3	1	0	4
INT18R455	Cryptography and Network	TP	CSE18R371	3	0	1	3.5
	Security						
PROFI	ESSIONAL ELECTIVES - COMPU	TING T	ECHNIQUES S	STR	EA]	M	
INT18R358	Distributed Systems	TP	CSE18R174	3	0	1	3.5
INT18R456	Formal Language and Automata	TP	CSE18R171	3	0	1	3.5
INT18R409	Computer Forensics	T	CSE18R371	3	0	0	3
INT18R410	Cloud Computing	T	CSE18R371	3	1	0	4
INT18R411	Green Computing	T	CSE18R371	3	0	0	3
INT18R412	Social Network Analysis	T	INT18R271	3	0	0	3
INT18R413	Information Retrieval Techniques	T	INT18R371	3	0	0	3
INT18R414	Parallel and Distributed Computing	T	INT18R358	3	0	0	3
INT18R415	Graph Theory	T	INT18R271	3	1	0	4
PROFE	SSIONAL ELECTIVES - ARTIFIC	CIAL INT	TELLIGENCE	STI	REA	M	
INT18R310	Bio Informatics	T	Nil	3	0	0	3
INT18R312	Neural Networks and Fuzzy Logic	T	Nil	3	1	0	4
INT18R313	Machine Learning	T	INT18R271	3	1	0	4
INT18R314	Soft Computing	T	Nil	3	1	0	4
INT18R416	Speech and Natural Language	T	CSE18R171	3	0	0	2
	Processing						3
INT18R417	Deep Learning	T	Nil	3	1	0	4

B. Open Elective for Other Departments (18 credits) (6 courses)

S.	Course Code	Course Name	Type	L	T	P	Credits
1.	INT18R315	Web Programming	T	3	0	0	3
2.	INT18R316	Big Data Analytics	T	3	0	0	3
3.	INT18R317	Information Theory & Coding	T	3	0	0	3
4.	INT18R318	Introduction To Information Security	T	3	0	0	3
5.	INT18R319	Cyber Forensics	T	3	0	0	3
6.	INT18R320	Essentials Of Information Technology	T	3	0	0	3
7.	INT18R321	Internet And Java	T	3	0	0	3
8.	INT18R322	R Programming	T	3	0	0	3
9.	INT18R418	Programming With C++ And Java	T	3	0	0	3
10.	INT18R419	Network Protocols	T	3	0	0	3

S.	Course Code	Course Name	Type	L	T	P	Credits
11	. INT18R420	High Speed Networks	T	3	0	0	3
12	. INT18R421	Introduction To Storage Management	Т	3	0	0	3

VI. Industrial Training / Internship

S.	Course Code	Course Name	Credits
1.	INT18R397	Industrial Training	Nil
2.	INT18R398	Internship Training	Nil

VII. Honours Courses

Course Code	Course Name	Course	Pre requisite	L	Т	P	С
INT18R422	Advanced Networks	T	CSE18R371	3	1	0	4
INT18R423	Agent Based Intelligent Systems	T	INT18R311	3	1	0	4
INT18R424	Computational Linguistics	T	CSE18R171	3	1	0	4
INT18R425	E Learning Techniques	T	Nil	3	1	0	4
INT18R426	Heterogeneous Computing	T	CSE17R174	3	1	0	4
INT18R427	Pattern Recognition	T	INT18R353	3	1	0	4
INT18R428	Visualization Techniques	T	INT18R311	3	1	0	4

VIII. Mandatory Courses

1. Induction Training

- 2. Environmental Sciences
- 3. Indian Constitution
- 4. Essence of Indian Traditional Knowledge

CO-SO Mapping Correlation

H – High Correlation

M – Medium Correlation

L – Low Correlation

BASIC SCIENCES AND MATHEMATICS

PHY18R174	CE	MI CONDU	L	T	P	С					
FH116K1/4	SE	MII CONDU	CIOKINIS	ics	3	1	2	5			
Prerequisite	Basic Know	vledge in Phys	sics								
Course	Basic science	ces and Mathe	ematics								
Category											
Course	Integrated C	egrated Course									
Type											
Objective	• To p	provide the stu	dents a firm u	nderstanding o	of the ba	sics of					
	Sem	iconductors.									
				oplication of se	emicond	lucting r	naterial	s			
		some of its me	easurements								
COURSE O	UTCOMES (
CO1			Electronic mate								
CO2	Understand	the basic con-	cepts of semic	onducting mat	erials						
CO3	Understand	the basic know	wledge on ligh	nt based semic	onducto	r interac	ction				
CO4	Understand	the fundamen	ıtal measurem	ents in semico	nducting	g materi	als				
CO5	Design, fab	rication, and c	haracterizatio	n of engineere	d semic	onducto	r mater	ials			
Mapping of	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	SO	D5	SO	6			
CO1	M										
CO2	M										
CO3	M	M									
CO4	Н	H M M									
CO5	M	Н	M		N	Л	Н	[

Course Topic(s)

UNIT 1: Basic Concepts and Electronic materials

Free electron theory, Density of states and energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Density of energy states, Occupation probability, Fermi level, Effective mass, Phonons.

UNIT 2: Semiconductors

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices.

UNIT 3: Light-semiconductor interaction

Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission; Joint density of states, Density of states for photons, Transition rates (Fermi's golden rule), Optical loss and gain; Photovoltaic effect, Exciton, Drude model.

UNIT 4: Engineered semiconducting materials

Density of states in 2D, 1D and 0D (qualitatively), Practical examples of low-dimensional systems such as quantum wells, wires, and dots: design, fabrication (lithiography,CVD), and characterization techniques(XRD, TEM).

Unit 5: Measurements: Conducting and Semiconducting Materials

Four-point probe and van der Pauw measurements for carrier density, resistivity, and hall mobility; Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics, band gap by UV-Vis spectroscopy.

List of Experiments

- 1. Diode V-I characteristics
- 2. Transistor Static characteristics C.E. mode
- 3. Transistor characteristics C.B. mode
- 4. Logic Gates AND, OR, NOT truth table verification discrete components
- 5. Zener diode characteristics & Break down Voltage
- 6. Zener regulated power supply.
- 7. Hall co-efficient of a semiconductor sample
- 8. Resistivity of a semiconductor crystal with temperature by four probe method and to determine band gap.
- 9. Determination of band gap of a semiconductor using P.O box.

Text Book(s):

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).

Reference Books:

- 1. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 2. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 3. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL
- 4. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL

	1				T	Т	P	С				
CHY18R171		CHEM	ISTRY		<u>L</u>	1	2	5				
Prerequisite	Nil] 3	1						
Course		ces and Mather	matics									
Category												
Course	Integrated	Course										
Type												
Objective	To introduc	To introduce the fundamental concepts and applications of Chemistry to										
	engineering	engineering students to understand, analyze and apply the same to complex										
	technical issues.											
	TCOMES (CO)											
CO1	Understand the significance and role of water quality parameters in the domestic											
		and engineering applications and analyzing the same through modern methods.										
CO2		and apply the p	principles of t	hermodynam	ics for s	solving	engine	eering				
202	problems.	.1 1 .		1	1 1			1 .				
CO3		the basic con			batterie	s, corro	osion a	nd to				
604		ame for the bett			£ 41	1 1 1	1 '	44				
CO4	-	ynthesis, charac			i tecnno	nogicai	iy impo	ortant				
CO5		composites and underlying pri			d applia	ections	of anal	vtico1				
003	techniques.		ncipies, insuu	memanon an	и аррис	ations	or amar	yticai				
Mapping of C												
CO\SO	SO1	SO2	SO3	SO4	SO	5	SC)6				
CO1	H	502	500				<u> </u>					
CO2	Н						N					
CO3	Н	H M M M										
CO4	M	M M M										
CO5	Н	M					N.	1				
Course Tonio	(a)				•		•	•				

Unit 1: Atomic and Molecular Structure

Schrodinger wave equation: Derivation of time independent Schrodinger wave equation, Representation of Schrodinger wave equation in polar coordinates - Radial distribution function graphs of s, p, d and f orbitals. Molecular Orbital Theory: MOT concept, MO diagrams of homonuclear diatomic molecules (hydrogen, nitrogen and oxygen) and hetero-nuclear diatomic molecules (carbon monoxide and nitric oxide). Crystal field theory: CFT concept, weak and strong ligands, energy level diagrams of transition metal ions (Fe²⁺& Fe³⁺) in octahedral and tetrahedral complexes and their magnetic properties. Intermolecular forces - Ionic, dipolar and van der Waals interactions.

Unit-2: Periodic Properties

Effective nuclear charge - Factors affecting effective nuclear charge: Penetration or shielding of orbitals - Variation of s, p, d and f orbital energies of atoms in the periodic table - Aufbau principle (Building-up principle): Application of Aufbau principle in writing electronic configuration, Deviation from Aufbau principle - Periodicity of properties in a periodic table - Periodic properties: Atomic and ionic sizes, ionization energies, electron affinity and

electronegativity - Variation of periodic properties in the periodic table - Hard soft acids and bases: Concept and examples.

Unit-3: Free Energy and Chemical Equilibria

Thermodynamic functions: Definition and mathematical expression for Work, Energy, Enthalpy, Entropy and Free energy - Nernst equation: Derivation, apply Nernst equation to determine of solubility product, pH (glass electrode). Potentiometric titrations: Acid-Base, Redox and precipitation reaction - Water analysis: Hardness by EDTA method and chloride ion by Argentomentric method - Corrosion: Definition, types (dry & wet) and mechanism. and control of Dry and Wet corrosion.

Unit4: Organic Reactions

Nucleophilic substitution reactions: Definition, types and examples of nucleophile, Compare nucleophilicity and basicity of a nuceophile - Types of nucleophilic substitution (case RX and ArX): Mechanism of S_N1, S_N2, S_Ni and Benzyne. Electrophilic substitution reactions: Definition, types and examples of electrophile - Electrophilic substitution reactions of hydrocarbons: Halogenation, sulphonation, nitration. Friedel crafts alkylation and acylation reaction. Nucleophilic addition reactions (case aldehydes and ketones): Polarity of C=O bond. General mechanism of nucleophilic addition reactions on aldehydes and ketones: HCN, HOH, ROH and NaHSO₃ addition. Electrophilic addition reactions (case alkenes): General mechanism of electrophilic addition reactions on alkene - Addition of HBr [Markownikoff & Anti-Markownikoff (peroxide effect)] - Addition of alkene (polymerization of ethylene). Elimination reactions: Types of elimination reactions (case alkyl halides): Dehydrohalogenation of alkyl halides - E₁ and E₂ mechanism - Dehydration of alcohols to alkene and ethers. Greener synthesis of drug molecules (Aspirin and Ibuprofen)

Unit 5: Stereochemistry & Spectroscopic Techniques

Stereochemistry - Definition with examples: Geometrical isomers (alkene) and stereoisomers, symmetry, chirality, enantiomers, diastereomers, meso and racemic mixture. Representation of 3D structures: Wedge formula, Fischer projections, Newmann and Sawhorse formula (upto 2 carbons) - Conformational analysis: Ethane, butane and cyclohexane - Configurational analysis: Rules of RS nomenclature and application of RS nomenclature to molecules containing one chiral centre. Electronic spectroscopy: Principle, instrumentation, selection rules and medicinal application of fluorescence spectroscopy. Nuclear magnetic resonance spectroscopy (¹H-NMR): Principle, instrumentation, chemical shift, coupling constant and application (structural identification of the compound C₃H₆O from ¹H-NMR data). X-ray diffraction: Principle, instrumentation and applications X-ray diffraction.

List of Experiments (Any 10):

- 1. Determination of Viscosity by Ostwald Viscometer.
- 2. Determination of surface tension by stalagmometer.
- 3. Adsorption of acetic acid by charcoal.
- 4. Determination of chloride content of water.
- 5. Estimation of hardness of water by EDTA method.
- 6. Determination of the rate constant of a reaction
- 7. Thin layer chromatography.
- 8. Determination of the partition coefficient of a substance between two immiscible liquids
- 9. Determination of Saponification /acid value of oil.
- 10. Preparation of Aspirin
- 11. Potentiometric titration of strong acid vs strong base.

- 12. Potentiometric titration of weak acid vs strong base.
- 13. Determination of cell constant and conductance of solutions.

Text Books

- 1. Engineering Chemistry, 2nd Edition, Wiley India (P) Ltd., 2018.
- 2. Stereochemistry of Organic Compounds, Ernest L. Eliel, Samuel H. Wilen Student edition, Wiley India (P) Ltd., 2017.
- 3. University Chemistry, by B. M. Mahan and R.J.Mayers, Pearson Publishers, 11th Edition, Noida, 2017.
- 4. Chemistry Laboratory Manual, Department of Chemistry, Kalasalingam University, 2018.

Reference Books

- 1. Fundamentals of Molecular Spectroscopy, by C. N. Banwell and E.M. McCash, Tata McGraw-Hill Publishers, 4th Edition, New Delhi, 2008.
- 2. Physical Chemistry, by <u>P. W. Atkins</u> and J.D. Paula, W H Freeman & Co Publishers, 10th Edition, 2014.
- 3. Modern Inorganic Chemistry, R. D. Madan, 4th Edition S. Chand & Company Ltd., 2009.
- 4. Organic Chemistry, Paula Y. Bruice, 7th Edition, Pearson (Dorling Kindersley India (P) Ltd.) 2014.
- 5. Principles of Physical Chemistry, B. R. Puri, L. R. Sharma, M. S. Pathania, 47th Edition, Vishal Publishing Co., 2017.
- 6. Spectrometric Identification of Organic Compounds, Robert M. Silverstein, Francis X. Webster, David J. Kiemle, David L. Bryce, 8th Edition, Wiley India (P) Ltd., 2010.
- 7. Inorganic Chemistry, Peter Atkins, Mark Weller, Fraser Armstrong, Jonathan Rourke, Tina Overton, Michael Hangerman 5th Edition, Oxford press, 2015.
- 8. Organic Chemistry, Volume 1, I. L. Finar, 6th Edition, Pearson (Thomson press India (P) Ltd.) 2014.

MAT18R101	C	Calculus and	Linear Algeb	ra	L 3	T 1	P 0	C 4			
Prerequisite	Nil				3	1	0	<u> </u> 4			
Course	Basic science	s and Mathen	natics								
Category											
Course Type	Theory										
Objective		e students to	acquire know	ledge and skil	lls in bas	sic con	nponei	nts of			
· ·			situations inv								
	diagonalize a	diagonalize a symmetric matrix using eigen values and eigenvectors.									
COURSE OU	TCOMES (CO	COMES (CO)									
CO1	know the fu	ndamental th	eorems such	as Rolle's th	neorem,	Mean	value	theor			
	Taylor's theor	rem and its ap	plications								
CO2	understand th	ne basic conc	epts of limit,	continuity, de	rivative.	partia	l deriv	ative			
	total derivativ		-		,	Γ					
CO3	solve the real	world proble	ms using diffe	rentiation and	integrati	ion					
CO4	understand th	e concepts of	f sequence, co	nvergent of s	equence	s, serie	es and	testing			
	convergent of	f series using	different meth	ods							
CO5	find the soluti	ion of simulta	neous linear e	quations using	g matrice	es and	to find	the ei			
			of a matrix								
	transformation							C			
Mapping of C	Os with ABE	ΓSOs									
CO\SO	SO1	SO2	SO3	SO4	SO5	;	SO	6			
CO1	Н										
CO2	Н										
CO3	Н	M									
CO4	Н										
CO5	Н	M					M				

Unit 1: Calculus:

Rolle's Theorem- Mean value theorems - Taylor's and Maclaurin theorems with remainders - indeterminate forms and L'Hospital's rule - Maxima and minima.

Unit 2: Multivariable Calculus (Differentiation):

Limit, continuity and partial derivatives - directional derivatives - total derivative - Maxima, minima and saddle points - Method of Lagrange multipliers.

Unit 3: Calculus (Applications):

Curvature (Cartesian coordinates) - Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Unit 4: Sequences and series:

Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions;

Unit 5: Matrices:

System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and eigenvectors; Cayley-Hamilton Theorem - Diagonalization of matrices - Orthogonal transformation- Reduction of Quadratic form to Canonical form.

TEXT BOOKS:

1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Del 43rd Edition, 2015.

REFERENCE BOOKS:

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 10th Edn., 2001.
- 2. Ramana B. V., Engineering Mathematics, Tata McGraw-Hill Publishing Company Limited New Delhi, Edition 2005.
- 3. Veerarajan, T., Engineering Mathematics (For First Year), Tata McGraw-Hill publishing company Limited, 2008.

MAT18R102	-	le Integration quation and C			L 3	T 1	P 0	C 4
Prerequisite	Nil	luution unu C	onipien vari				Ü	<u> </u>
Course	Basic science	es and Mather	natics					
Category								
Course Type	Theory							
Objective				concepts of mi				
	* *		analytic func	tions on compl	ex plane	and p	erform	l
	complex into	egration.						
COURSE OU								
CO1				riple integral an				
CO2	Know about	the application	ns of double a	nd triple integra	al in vec	tor cal	culus	
CO3	Know the m	ethods of solvi	ing differentia	l equations of f	irst and	second	orders	3
CO4	understand t	he concepts of	analytic funct	ions, conforma	l mappi	ngs and	d biline	ear
	transformati	ons						
CO5	understand 1	the concepts of	of singularity,	residues and e	evaluatio	on of c	ertain	impro
	integrals							
Mapping of C	Os with ABE	ET SOs						
CO\SO	SO1	SO2	SO3	SO4	SO5		SO	6
CO1	Н							
CO2	Н	M						
CO3	Н							
CO4	Н							
CO5	Н						M	

Unit 1: Multivariable Calculus (Integration):

Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volume; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds;

Unit 2: Integral theorems:

Gradient, curl and divergence. Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

Unit 3: Ordinary differential equations:

Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equations.

Unit 4: Complex Variable – Differentiation:

Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.

Unit 5: Complex Variable – Integration:

Contour integrals, Cauchy Integral formula (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (Integration around small semicircles and rectangular contours).

TEXT BOOKS:

1. Grewal, B.S., Grewal, J.S., *Higher Engineering Mathematics*, Khanna Publishers, New Delhi, 43rd Edition, 2015..

REFERENCE BOOKS:

- 1. Kreyszig, E, *Advanced Engineering Mathematics*, John Wiley and Sons (Asia) Limited, Singapore, 10th Edn., 2001.
- 2. Ramana B. V., *Engineering Mathematics*, Tata McGraw-Hill Publishing Company Limited, New Delhi, Edition 2005.
- 3. Veerarajan, T., *Engineering Mathematics (For First Year)*, Tata McGraw-Hill publish company Limited, 2008.

MAT18R202	PROI	BABILITY	AND STATIS	STICS	L 3	T 1	P 0	C 4		
Prerequisite	Nil						1			
Course	Basic sciences	s and Math	ematics							
Category										
Course Type	Theory									
Objective	To enable the	To enable the students to acquire skills to handle bivariate distributions and to								
	solve real wor	solve real world problems using statistical methods								
COURSE OUT	COMES (CO)	OMES (CO)								
CO1			of probability,	random varia	ıble, distrib	oution fi	unctio	n		
	and expectation	-	1 27		,					
CO2	Learn standar	d distribution	ons and its appl	ications						
CO3	Evaluate the rabout the corr		kewness and ku regression	rtosis for sta	ndard dist	ribution	s and	to kn		
CO4	Solve the phys	sical world	problems using	small and la	irge sampl	e theory	7			
CO5	Know the met	thod of usir	ng analysis of va	ariance to sol	ve real wo	rld prob	olems			
Mapping of CC	s with ABET	SOs								
CO\SO	SO1	SO2	SO3	SO4	SO5		SO ₆			
CO1	Н									
CO2	Н	M								
CO3	Н	M					M			
CO4	Н						M			
CO5	Н	M					M			

Unit 1: Basic Probability and Random Variables:

Axiomatic definition of Probability - Conditional probability - Independent events - Total probability - Bayes theorem - Random variables - Discrete random variable - Probability mass function - Continuous random variable - Probability density functions - Cumulative distribution function-Properties- Expectation.

Unit 2: Standard Distributions and Bivariate Distributions:

Binomial, Poisson, Uniform, Exponential and Normal distributions and their properties. Two dimensional random variables – Joint probability density function – Cumulative distribution function – Marginal density function

Unit 3: Statistics:

Measures of Central tendency: Moments, skewness and Kurtosis - evaluation of statistical parameters for Binomial, Poisson and Normal distributions, Correlation and regression - Rank correlation- Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves.

Unit 4: Applied Statistics:

Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations. Small samples: Test for single mean, difference of means- Chi-square test for goodness of fit and independence of attributes.

Unit 5: Design of Experiments:

Analysis of variance – One way classification –Completely Randomised Design(C R D)–Two-way classification –Randomised Block Design(R.B.D)– Latin Square Design(L S D).

TEXT BOOKS:

1. T. Veerarajan, Probability, Statistics and Random process, Fourth edition, Tata McGraw-Hill Education (India) Pvt. Ltd., 2016

REFERENCE BOOKS:

- 1. Flynn M., Probability, Random variables and random processes, Harper & Row Publishers, New York, 1982.
- 2. Gupta, S.C, and Kapur, J.N., Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi, 11th Edition., 2006.

BIT18R101	BIC	DLOGY FOR E	ENGINEER	S	L 3	T 0	P C 0 3				
Prerequisite	Nil				•	•					
Course	Basic sciences	and Mathematic	es								
Category											
Course	Theory	ory									
Type											
COURSE OU	JTCOMES (CO	D)									
CO1		undamentals of o									
CO2	Understand the	e classification a	and functions	s of biomolec	ules						
CO3	Elaborate the l	aborate the basic cellular mechanisms such as replication, transcription and									
	translation										
CO4	Describe the u	nderlying conce	pts of infect	ion and immu	ınity						
CO5	Explain variou	s applications of	f biology								
Mapping of C	COs with ABE	ΓSOs									
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SO6				
CO1	M										
CO2	Н										
CO3	M			L							
CO4	Н			M							
CO5	M	M		M			M				

UNIT 1: INTRODUCTION

Fundamental difference between science and engineering- comparison between eye and camera, Bird flying and aircraft; major discoveries in biology-; Classification based on: Cellularity-Unicellular and Multicellular; Ultra structure - prokaryotes and eukaryotes; three major kingdoms of life; Cell structure, intracellular organelles and their functions, comparison of plant and animal cells- Overview of Cell cycle and cell division

UNIT 2: BIOMOLECULES

Chemistry of biomolecules: Carbohydrates, Lipids, Proteins; classification of amino acids; classification of proteins based on structure and functions; Nucleic acids -types, structure and function of DNA and RNA

UNIT 3: GENES TO PROTEINS

Gene, Genome and chromosome; Central dogma of molecular biology; Classical experiments of DNA: Griffith and, Avery, McCarty and MacLeod, Meselson and Stahl - DNA replication, Transcription and Translation

UNIT 4: MICROBIOLOGY

Microscopy; Microbes as infectious agents - malaria, tuberculosis, typhoid, polio, dengue, AIDS;; cultivation of bacteria. Immunity - innate and acquired immunity - organs and cells of the immune system - classification of antibodies - types of T cells - transplantation, autoimmunity overview

Unit 5: APPLICATIONS OF BIOLOGY

Healthcare-antibiotics, vaccines, monoclonal antibodies, insulin and interferons; Beneficial bacteria - probiotic bacteria, nitrogen fixing bacteria, fermentation and fermented foods and

products Environmental - waste water treatment, bioremediation; Biomaterials and biopolymers for medical and environmental applications; Biosensors;

TEXT BOOKS:

- 1. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology- Lippincott Williams & Wilkins- Philadelphia- USA- 8th Edition- 2010.
- 2. Voet, D., Voet, G., Biochemistry John Wiley and Sons, Singapore 3rd Edition- 2001.
- 3. Pelczar MJ, Chan ECS and Krieg NR Microbiology Tata McGraw Hill, India- 7th Edition- 2010

REFERENCES:

1. Friefelder. D. -Molecular Biology- McGraw-Hill Companies- New York, USA- 5th Edition- 2013.

HUMANITIES AND SOCIAL SCIENCES

HCC10D151	ENGLISH FOR TECHNICAL	L	T	P	С			
HSS18R151	COMMUNICATION	2	0	2	3			
Prerequisite	Nil							
Course	Humanities and Social Sciences							
Category								
Course	Theory with Practical							
Type								
Course Topic	<u>(s)</u>							
UNIT	1 – VOCABULARY BUILDING							
1.1	The concept of word formation							
1.2	oot words from foreign languages and their use in English							
1.3	Prefixes and suffixes; word derivatives using them							
1.4	ynonyms, Antonyms and standard Abbreviations							
2	UNIT 2: BASIC WRITING SKILLS							
2.1	entence structures							
2.2	se of phrases and clauses in sentences							
2.3	reating Coherence							
2.4	Techniques for Writing Precisely							
3	UNIT 3: IDENTIFYING COMMON ERRORS IN WRITING							
3.1	Tenses							
3.2	Subject – verb agreement	Subject – verb agreement						
3.3	Noun –Pronoun Agreement							
3.4	Verbs – Transitive, Intransitive							
3.5	Misplaced Modifiers							
3.6	Articles							
3.7	Prepositions							
3.8	Redundancies and Clichés							
3.9	Direct, Indirect speech							
3.10	Infinitives, Gerunds							
3.11	Comparison of adjectives							
4	UNIT 4: NATURE AND STYLE OF SENSIBLE W	RITIN	IG					
4.1	Describing							
4.2	Defining							
4.3	Classifying							
4.4	Providing examples or evidence							
4.5	Writing introduction or conclusion							
5	UNIT 5: WRITING PRACTICES							
5.1	Comprehension							
5.2	Precis writing							
5.3	Essay writing							
5.4	Letter writing							
5.5	Instructions							

- 5.6 Paragraph development
- **6 UNIT 6: ORAL COMMUNICATION**
- i) Listening comprehension
- ii) Pronunciation, intonation, stress and rhythm
- iii) Common everyday situations: Conversations and dialogues
- iv) Interviews
- v) Formal presentations

SOFTSKILLS

UCC10D101	SOFT SKILLS I	L	T	P	С
HSS18R101	SOFT SKILLS I		1		

Course Topic(s)

UNIT 1: EFFECTIVE COMMUNICATION

Listening: Focus, Intuition about the speaker, Critical Listening, Writing: Reports, E-mail, Book & Movie Review, Notices & Advertisements, Speaking: Introducing Self, Just - a – Minute, Ad Zap, Story Telling

UNIT 2: QUANTITATIVE ABILITY

Introduction to Numerical Skills, Introduction to Logical Skills, Vedic Mathematics

UNIT 3: TIME MANAGEMENT

Prioritization, Procrastination, Multi-Tasking

UNIT 4: SOCIAL MEDIA

Blog Writing, LinkedIn, Usage of messaging applications

UNIT 5: SOFT SKILLS

Importance of Soft Skills, Lateral Thinking, Begin with the End in Mind, First things First, Think Win – Win

HCC10D103	SOFT SKILLS II	L	T	P	С
HSS18R102		1	0	0	1

Course Topic(s)

UNIT 1: EFFECTIVE COMMUNICATION

Reading: Speed Reading techniques, News Story Analysis, Presentation: Organizing Content,

Use of fonts & animations, Mock Presentations

UNIT 2: QUANTITATIVE ABILITY

Number Properties, Averages, Progression

UNIT 3: VERBAL ABILITY

Vocabulary Building Techniques, Analogy

UNIT 4: SOCIAL INTERACTION

Interpersonal Skills, Dealing with difficult people, Stress Management

UNIT 5: SOFT SKILLS

Seek first to understand, then to be understood, Synergy, Secret, Mind Maps, Creativity

HSS18R201 SO	SOFT SKILLS III	L	T	P	С
HSS18R201		1	0	0	1

UNIT 1: EFFECTIVE COMMUNICATION

Sentence Construction, Tenses, Verbal Communication, Parts of Speech, Framing effective Sentences

UNIT 2: QUANTITATIVE ABILITY

Percentages, Profit-Loss-Discount, Ratio & Proportion, Mixtures & Allegation, Interest Calculations, Data Sufficiency

UNIT 3: LOGICAL ABILITY

Data Arrangements, Coding & Decoding, Ranking / Ordering, Venn Diagrams, Syllogisms, Introduction to Data Interpretation

UNIT 4: VERBAL ABILITY

Sentence correction, Sentence Completion, Idioms & Phrases, Articles, Analytical Writing, Descriptive Writing

UNIT 5: SOFT SKILLS

Dining Etiquette, Hygiene, Team Work, Collaboration, Interdependence, Resume Building, Power Verbs, Group Discussion, Personal Interview.

HUMANITIES ELECTIVES

HSS18R001	MAN	NAGEMENT		AND	L	T	P	C			
		TECHN	NIQUES		3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory	neory									
Type											
Objective(s)		addresses the									
		d importance as well as the functions performed by manages-planning,									
		ganizing, directing and controlling. The course also intends to show students									
		ne applications of management functions in various enterprises such as									
C	marketing, finance, personnel, production, etc.										
Course Outo		the historical	haalidran and	1 fundamenta	la of N	Ionogon	ant the	wahta			
COI	-		•			_		_			
		ınderstanding	the conceptu	iai irame w	ork of	Manag	gement	as a			
	discipline.										
CO2		s about the v			ing, D	ecision	making	g and			
		to help solving									
CO3	To Understa	anding concep	ts of Ethics, D	elegation, Co	ordina	tion and	Team v	vork			
CO4	To Study an	nd understand	the manageme	ent concepts a	nd styl	es in Glo	bal cor	itext			
CO5	To develop	an understan	ding about en	nerging conce	pts in	manage	ment th	ought			
	and philoso		_		_						
Mapping of	COs with AB	BET Sos									
CO\SO	SO1	SO2	SO3	SO4	SO5	;	SO6				
CO1	Н		Н								
CO2			M								
CO3	Н	M	M	Н		Н					
CO4	Н		M								
CO5			M	M							
Course Toni	a(a)	•	•	•	•		•				

Course Topic(s)

UNIT 1: DEVELOPMENT OF MANAGEMENT THOUGHTS

Scientific Management Movement - Administrative Movement - Human Relations Movement - Decision Movement - Behavioral Science Movement - Systems Movement - Contingency Movement.

UNIT 2: ESSENTIALS OF PLANNING

Planning Objectives – Goals - Programmed Decisions and Unprogrammed Decisions; Decision – Making - Creativity in Decision - Making, Forecasting and Strategy to Formulation.

UNIT 3: EFFECTIVE ORGANIZING

Span of Control – Departmentation - Authority; Responsibility - Bureaucracy and Adhocracy;

Group Dynamics.

UNIT 4: STAFFING AND DIRECTING

Staffing: Manpower Planning – Recruitment Sources – Selection Procedure – Training Methods – Performance Evaluation Methods – Executive Development Programs - Directing: Communication Process and Barriers – Motivation Techniques – Financial and Non – Financial Motivation- Leadership Qualities and Styles.

UNIT 5: CONTROLLING AND RECENT CONCEPTS

Controlling: Meaning and Process - Requisites of Effective Control - Control Techniques. Emerging Issues in Management: Japanese and American Management - Management by Objectives - Knowledge Management - Technology Management - Business Process Outsourcing- Social Responsibility and Business Ethics.

TEXT BOOKS

- 1. Harold Koontz & Heinz Weihrich, "Essentials of Management: An International, Innovation and Leadership Perspective", 10th Edition, McGraw Hill Education (India) Private Ltd. New Delhi, 2016.
- 2. Stephen P. Robbins, Mary A. Coulter, "Managemen"t, 13th Edition, Pearson Education Limited, New Delhi, 2016

REFERENCE BOOKS

- 1. C.B.Gupta, "Management Theory and Practice", 19th Revised Edition, Sultan Chand & Sons, New Delhi.2017.
- 2. L.M.Prasad, "Principles and Practices of Management", 9th Edition, Sultan Chand and Sons Private Limited, 2015.
- 3. K.Aswathappa, "Essentials of Business Environment: Text Cases and Exercises" 12th, edition, Himalaya Publishing House, Mumbai, 2014.
- 4. Tripathi & Reddy, "Principles of Management", 5th Edition, Tata McGraw Hill publishing company Ltd, New Delhi, 2012.

HSS18R002	MA	ARKETING N	MANAGEME	NT	L	T	P	C		
					3	0	0	3		
Prerequisite										
Course	Humanities	Elective								
Category										
Course	Theory									
Type										
Objective(s)		This course develops students understanding of how organizations match the								
		equirements of consumers in competitive environments, and develop strategies								
		o create the competitive edge. It covers areas such as analysis, planning,								
		implementation, and control, as well as the marketing mix, exportation, and the								
	social aspects of marketing.									
Course Outo	_ ` '									
CO1	_	understandir	ng of marketin	ng concepts,	philos	ophies a	ınd hist	orical		
	background									
CO2		understanding			nd con	nplexities	s for stu	ıdents		
		practical busin								
CO3		tand concepts								
	product attr	ributes, and pr	icing strategie	s prevalent in	dome	estic and	interna	tional		
	scenario.									
CO4	To Study	various tools	and technique	es of promot	ing th	e produc	ets in e	thical		
	manner.									
CO5	To Understa	and emerging	concepts of ma	arketing in the	emer	ging glob	oal marl	kets		
Mapping of	COs with AB	SET Sos								
CO\SO	SO1	SO2	SO3	SO4	SO5	5	SO6			
CO1			M				I	_		
CO2		Н	M				H	- I		
CO3	Н		M				H	H		
CO4	Н	M	M	Н						
CO5			M				N	Л		
C T .	T:-(-)									

MARKETING

Meaning - concept - functions - marketing Planning & implementation marketing Programmes - Marketing environment - Market Segmentation and consumer behaviour - Influencing factors, Decision process - Marketing mix - Marketing department.

PRODUCT

Meaning - Product planning - policies - positioning - New product development Product life cycle - BCG Matrix - branding. Packing, labeling.

PRICING

Pricing objectives – Setting and modifying the price – Different pricing method Product line pricing and new product pricing.

DISTRIBUTION

Nature of Marketing channels - Types of Channel flows - Channel functions - Channel cooperation, conflict and competition - Direct Marketing Telemarketing, Internet shopping.

PROMOTION

Promotion Mix - Advertisement - Message - copy writing - Advertisement - budgeting - Measuring advertisement effectiveness - Media strategy - sales promotion - Personal selling steps, publicity and direct marketing.

TEXT BOOKS

- 1. Philip.T.Khotler, Kevin Lane Keller, "Marketing Management", 15th Edition, Pearson Education, New Delhi, 2016.
- 2. Ramaswamy.VS & Namakumari. S, "Marketing Management Global Perspective, Indian Contex"t, McGraw Hill Education (India) Private Limited, New Delhi, 2013.

REFERENCE BOOKS

- 1. Rajan Saxena, Dorector, Jain S.P., "Marketing Managemen"t, 1st edition, Tata McGraw Hill, New Delhi, 2006.
- 2. K.S.Chandrasekar, "Marketing Management, Text & Cases", 1st edition, Tata McGraw hill Education Pvt. Ltd. 2013.
- 3. Tapan K.Panda, "Marketing Management Text and Cases", 2nd Edition, Excel Books.2008.

HSS18R003	ORGA	NIZATION	AL PSVCHOL	OCV	L	T	P	C	
113316K003	OKGA	MILATIONE	AL I SI CIIO		3	0	0	3	
Prerequisite	Nil								
Course	Humanities	Elective							
Category									
Course	Theory								
Type									
Objective(s)		aims to clari							
	1 2	osychology. Including organizations and understanding its business design based on efficiency and quality of employee life. It also aims at enhancing the quality							
		employees. W							
		psychological assessment, personnel decisions inline with training and							
		levelopment, organizational change and organizational health in specific the ntrinsic problems are understood paving way towards standards that are high.							
C 0 4		blems are und	erstood paving	g way towards	stand	ards that	are hig	h.	
Course Outo	/	• , , ,	21 4 1 1	• ,•	1	1 1			
CO1		sic concepts of					.1	1	
CO2	individual b	e different wa	ays of achievi	ng organizati	ionai	effective	ness th	rougn	
CO2			4: 4. : 1::	L 1 1 1	41.	•	4	1	
CO3		e concepts rela			to acn	neve gro	up targe	et and	
CO4		dership positio			to area	luoto ho	204 004	n o trumo	
CO4	of orgnizati	nd the organiz	zational change	es and means	to eva	iluate bas	sea on i	lature	
CO5		plications of	changes align	ing the intere	et of i	individus	1 grou	n and	
		n as a whole.	changes angh	ing the intere	St 01 1	ilidividue	ii, giou	p and	
Mapping of	COs with AB								
CO\SO	SO1	SO2	SO3	SO4	SO5	;	SO6		
CO1			M						
CO2	Н		M			Н			
CO3	Н		M			Н			
CO4			M						
CO5			M			Н			
C T	()								

FOCUS AND PURPOSE

Organizational Behaviour - Need and importance, nature and scope, framework.

INDIVIDUAL BEHAVIOUR

Personality – types – factors influencing personality – theories – learning – types of learners – learning theories – organizational Behaviour modification. Attitudes – characteristics – components – formation – measurement. Perceptions – importance – factors influencing perception – interpersonal perception.

GROUP BEHAVIOUR

Organization structure – formation – groups in organizations – influence – group dynamics – emergence of informal leaders and working norms – group decision making techniques – interpersonal relations –communication process and Group Communication.

LEADERSHIP

Leadership styles – theories – Qualities - leaders Vs managers – sources of power – power

centers – power and Organisational Politics- Motivation.

ORGANISATIONAL DEVELOPMENT

Organizational development - Importance, characteristics, objectives, stability Vs change, proactive vs reaction change, the change process, resistance to change, managing change, team building - Organizational effectiveness, perspective, effectiveness Vs efficiency, approaches, the time dimension, achieving organizational effectiveness

TEXT BOOKS

- 1. Stephen P.Robins and Timothy A . Judge, "Organisational Behavior", Peason Education, 17th edition, 2017.
- 2. Fred Luthans, "Organisational Behavior", McGraw Education, 12th Edition, 2010.

REFERENCES

- 1. Aswathappa, "Organisational Behavior", Himalaya Publishing House, 12th edition, 2016.
- 2. P.Subba Rao, "Management and Organisational behavior: Text, Cases and Games", Himalaya Publishing House, 1st edition, 2010.
- 3. Mullins, "Organisational Behavior", Pearson Education Limited, 9th edition, 2010.
- 4. L.M.Prasad, "Organisational Behaviour", 5th edition, Sultan Chand and Sons, New Delhi, 2014.

HSS18R004	P	ROJECT MA	NAGEMEN	Т	L 3	T 0	P 0	C 3		
Prerequisite	Nil					U	U	<u> </u>		
Course	Humanities	Elective								
Category										
Course	Theory									
Type										
Objective(s) Course Outc	students to proposals. I testing the t desirability facilitates the project plant project man	This course describes concepts relating to project management and enable students to evolve project objectives appropriately with relevance to business proposals. It covers the required dimensions relating to evaluation of project by testing the technical feasibility, financial viability, market acceptability and social desirability of projects. It gives an account on risk and profitability analysis that facilitates the making of the effective project proposal and guides learners in project planning, implementation and control. It also emancipates the scope of project management in undertaking foreign collaboration projects.								
CO1		s the concept o	f project and s	steps in projec	et mana	agement.				
CO2	Understand	the basics stag	ges involved in	n preparing bu	isiness	proposal	ls.			
CO3		e technical feas ability of proje	•	ial viability, 1	market	acceptab	oility an	ıd		
CO4		analyse the Ris		vility of the pr	oiect r	ronosals				
CO5		ely as project								
Mapping of				p 01 p10	<u> </u>					
CO\SO	SO1	SO2	SO3	SO4	SO5	,	SO6			
CO1			M							
CO2	Н		M							
CO3	Н		M				ŀ	I		
CO4	Н						N	1		
CO5	()		M			H				

INTRODUCTION TO PROJECT MANAGEMENT

Projects - Project ideas and preliminary screening. Developments - Project planning to Project completion - Pre-investment phase, Investment phase, operational phase - Governmental Regulatory framework. Capital Budgeting .

STAGES OF PROJECT MANAGEMENT

Opportunity studies - prefeasibility studies, functional studies or support studies, feasibility study expansion projects, data for feasibility study. Market and Technical Appraisal: Market and Demand analysis, Market Survey, Demand forecasting. Technical analysis- Materials and inputs, Choice of Technology, Product mix, Plant location, capacity, Machinery and equipment.

APPRAISAL PROCESS

Concepts. Time value of money - Present and future value. Appraisal criteria - Urgency, Payback period, Rate of return, Debt service coverage ratio, Net present value, Benefit cost ratio, Internal rate of return, Annual capital charge, Investment appraisal in practice.

RISK AND PROFITABILITY ANALYSIS

Risk analysis- Measures of risk, Sensitivity analysis, and Decision tree analysis. Means of

financing, Term Loans, Financial Institutions. Cost of capital. Profitability - Cost of Production, Break-even analysis. Assessing the tax burden and financial projections.

PROJECT PLANNING, IMPLEMENTATION, AND CONTROL

Forms of Project Organization, Project Planning, Implementation, and Control - Network construction, CPM, PERT, Development of Project schedule, Crashing of Project Network. Introduction to Foreign collaboration projects - Governmental policy framework, Need for foreign technology, Royalty payments, Foreign investments and procedural aspects.

TEXT BOOKS

- 1. Prasanna Chandra, "Projects: Planning, Analysis, Selection, Financing, Implementation", 8th Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2014.
- 2. M.R. Gopalan, "Project Management Core Textbook", (Paper Back) 2nd edition, Wiley India, 2015

REFERENCES

- 1. Harold Kerzne, "Project Management Best Practices: Achieving Global Excellence", 3edition, Wiley Publications, 2013
- 2. George Ritz, Sidney Levy, "Project Management in Construction", Sixth Edition, Mc. Graw Hill Education, 2011.
- 3. Gary Heerkens, "Project Management", Second Edition, Mc. Graw Hill Education, 2013
- 4. P.Gopalakrishnan and V.E.Rama Moorthy "Text Book of Project Management",1st Edition, Macmillan India Ltd., New Delhi, 2014.
- 5. John M. Nicholas, Herman Steyn, "Project Management for Engineering, Business and Technology", 5th Edition, Routledge, 2016.

HSS18R005	STRESS		MENT AND C	COPING	L	T	P	C			
		STRAT	TEGIES		3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory										
Type											
Objective(s)	stress in the one. The s today's org skills are re understandi	tress has become an integral part of every professional's life. Approaching the tress in the right manner has become imperative as it has become an unavoidable ne. The stress and its effect over performance has also become notable in oday's organization. In order to cope well and to sustain in market, for that the kills are required to understand and to overcome the same. This course helps in inderstanding the intricacies of stress and overcoming the stress through ppropriate approaches.									
Course Outo											
CO1	The student	s understand t	he responsibili	ty of tackling	stress						
CO2		ts identify an n team in work	d modify the splace.	approaches of	of stre	ss accor	dingly	while			
CO3	Those stude	ents who are p	orone to face has appropriatel			ng cond	itions v	vill be			
CO4	The student	s will impleme	ent a stress -fr	ee work envii	onmer	nt.					
CO5			their way of l ng condition a		-	•	a whol	le and			
Mapping of	COs with AB	SET Sos									
CO\SO	SO1	SO2	SO3	SO4	SO5	;	SO6				
CO1				Н							
CO2				M		Н					
CO3	Н	M		M							
CO4	Н		M								
CO5			M	M							
C T .	()										

UNDERSTANDING STRESS

 $\label{lem:meaning-symptoms:Biological and Behavioural-Work Related Stress-Individual Stress-Reducing Stress-Burnout.$

COMMON STRESS FACTORS TIME

Common Sources of Stress Biological, Personality and Environmental – Time Management – Techniques – Importance of planning the day – Time management schedule – Developing concentration – Organizing the Work Area - Prioritizing – Beginning at the start – Techniques for conquering procrastination – Sensible delegation – Taking the right breaks – Learning to say 'No'.

CRISIS MANAGEMENT

Implications – People issues – Structure issues, environmental issues, psychological fall outs – Learning to keep calm – Preventing interruptions – Controlling crisis – Importance of good

communication – Taking advantage of crisis – Pushing new ideas – Empowerment

WORK PLACE HUMOUR

Developing a sense of Humour – Learning to laugh, role of group cohesion and team spirit, using humour at work, reducing conflicts with humour. Coping Styles Defensive Behaviours and Problem-Solving.

SELF DEVELOPMENT

Improving Personality – Leading with Integrity, enhancing creativity – Effective Decision Making – Sensible Communication – The Listening Game – Managing Self - Meditation for Peace – Yoga for Life.

TEXT BOOKS

- 1. D. Girdano and G. Everly., "Controlling Stress and Tension", 9 th Edition, Prentice-Hall, 2013.
- 2. Greenberg Jerrold S., "Comprehensive Stress Management", 14th Edition, McGraw Hill Education, 2017.

- 1. Dr. P.K.Dutta, "Stress Management" Himalaya Publishing House, First Edition 2010.
- 2. Schafer, "Stress Management", 4th Edition, Cengage Learning, Delhi, 2008
- 3. Wolfgang Linden, "Stress Managemen"t, Sage Publication, 1st Edition 2005.
- 4. Daniel Girdano, Dorothy Dusek and George S. Everly, "Controlling Stress and Tension", 8th Edition, Pearson Education, 2009.
- 5. Brian Luke Seaward, "Essentials of managing Stress", 1st edition, Jones & Bartlett Publishers, 2013.

HSS18R006	ECO	ONOMICS FO	OR ENGINE	ERS	L	T	P	C			
					3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory	neory									
Type											
Objective(s)	This course	provides an	introduction	to a broad ra	nge of	f econor	nic con	cepts,			
	theories an	d analytical	techniques. It	considers b	oth m	icroecor	nomics	- the			
	analysis of	choices made	by individua	l decision-ma	king u	ınits (ho	usehold	ls and			
	firms) - and	macroeconor	nics - the anal	ysis of the ec	onomy	as a wh	nole. De	emand			
	and market	structure will	be analysed	at the firm le	vel. N	lacroeco	nomic	issues			
	regarding N	ational Incom	e, Inflation, la	bour and mon	ey at a	n aggreg	gate leve	el will			
	be modelled	d. The role of	government	policy to add	ress m	icroecor	nomic n	narket			
	failures and	macroeconom	nic objectives	will be examin	ned.						
Course Outc	ome(s)										
CO1	Identify and	l learn econom	ic concepts in	to market eco	nomie	s.					
CO2	Understand	the pricing n	nethods, inter	pret the mark	et fac	tors to c	letermin	ne the			
	price for pro	oducts or servi	ces and to mal	king decisions	based	on dem	and fact	tors.			
CO3	Understand	the major c	haracteristics	of different	marke	et structi	ures an	d the			
	implications	s for the behav	ior of the firm	1							
CO4	Measure liv	ving standards	s, inflation, a	nd unemploy	ment	for use	as ecoi	nomic			
	indicators.	_									
CO5	Analyze th	e determinan	ts of the rela	ative strength	s of	monetar	y polic	y for			
	sustainable	growth of our	nation and Int	ernational Tra	ıde.		-				
Mapping of	COs with AB	ET Sos									
CO\SO	SO1	SO2	SO3	SO4	SO5	5	SO6				
CO1		Н					N	1			
CO2	Н		M				N	1			
CO3	Н		Н	Н		Н	N	1			
CO4		Н	Н			Н					
CO5							N	1			

DEFINITION AND SCOPE OF ECONOMICS

Definitions by A. Smith, A. Marshal and L. Robbins, P.Samuels on and their critical examination - Nature and scope of Economics - Micro-economics in relation to other branches of Economics.

PRICING AND LAW OF DEMAND

Demand, Factors influencing demand, Elasticity of demand - price, income and cross, concepts and measurement - Break Even Analysis – Law of Demand - Price, income and substitution effects - Giffen goods- Pricing Methods.

MARKET STRUCTURE

Definition of market. Concepts of product and factor markets. Different types of market: perfect

competition, monopoly, imperfect competition, monopolistic, competition and oligopoly. Demand and Supply schedules. Price determination under perfect competition in long and short run. Price determination under monopoly. Discriminating monopoly.

MACRO-ECONOMICS

Meaning, Macro-economic Policy and Its Objectives and Instruments - National Income and Social Accounting - Concepts, components, and measurement - Basic circular flow of income model, Unemployment, trade cycle, Inflation - causes, types, effects and control.

COMMERCIAL AND CENTRAL BANKS

Credit creation, monetary policy and tools - Balance of payments - Items in the balance of payments account, equilibrium in the balance of payments.

TEXT BOOKS

- 1. Gupta, S.B., "Monetary Economics", S. Chand & Co., New Delhi, 2nd Edition, 2009.
- 2. Ruddar Datt and K.P.M.Sundharam, "Indian Economy", 70th Edition, S.Chand & Company Ltd., New Delhi, 2013.

- 1. D.N.Dewedi, "Managerial Economics", 8th Edition, S.Chand & Company Ltd., New Delhi, 2005.
- 2. Gupta, G.S. "Macroeconomics, Theory and Applications", 2nd edition, Tata McGraw-Hill publishing company Ltd., New Delhi, 2004.
- 3. "Macroeconomic –Theory and polic", 3rd Edition, Tata McGraw-Hill publishing company Ltd., New Delhi, 2010."Micro Economic", Mas Colell, 1st edition, Oxford Press, Delhi, 2012.

HSS18R007	HU	MAN RESOU	JRCE MANA	GEMENT	L	T	P	C			
113310KUU7		AND L	ABOUR LAV	V	3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory										
Type											
Objective(s)	performance special emp managers to areas such selection,	his course aims at exploring key issues related to the management, erformance, and development of human resources in the workplace. It places becial emphasis on making decisions and developing plans that will enable tanagers to make the best possible use of their human resources, and covers reas such as: manpower planning, analysis and evaluation, recruitment and election, wages and salaries, training and management development, erformance appraisal, and industrial relations.									
Course Outo		e appraisar, an	a maasarar rei	ations.							
CO1	Provide the	e basic know to resolve the	ledge on dev	reloping the	emplo	yment 1	relation	s and			
CO2	Design an		nd suitable r	ole of HR s	pecial	ist for i	mpleme	enting			
CO3	Manage the	manpower to	motivate and a	attract them to	retair	in the o	rganiza	tion.			
CO4	Develop the employmen	-	ity of emplo	yer and lega	ıl sys	stem to	manag	e the			
CO5	Provide mo domains thi	re insights on s in turn enhar	the applicabil nces a strong h			on vario	ous func	tional			
	COs with AB		Γ		T	_	Т				
CO\SO	SO1	SO2	SO3	SO4	SOS		SO6				
CO1			M	Н		M					
CO2	H		M			M					
CO3	Н	Н	M			Н					
CO4			M	Н							
CO5	M		M	M		M					

FUNDAMENTALS OF HRM

Human Resource Development Systems-HR environment in India-Functions and Operations of a Personnel Office - Emerging HR Trends - HR information system

HRM FUNCTIONS

Job analysis and job design - HR planning — Recruitment - selection and induction- Staff Training and Development-Career planning and Development- Job Evaluation-Performance Appraisal and Potential Evaluation-Wage determination; salary structure-Wage policies and Regulations-Employee benefits and services

MOTIVATING HUMAN RESOURCES

Team and Team work - Collective Bargaining Employee Morale - Participative Management - Quality Circle - Empowerment - counseling and mentoring.

MAINTENANCE OF WORKERS

Compensation Management- Reward system – Labour relations – Employee Welfare, Safety and

 $Health-Employee\ benefits\ and\ services-Promotion\ ,\ Transfers\ and\ separation-Ethical\ issues\ in\ HR\ Management\ and\ International\ Human\ Resource\ Management\ -\ Legal\ Aspect\ of\ Labour$

BUSINESS LAW

Factories Act, 1948 - Industrial Dispute Act, 1947 - Industrial employment - Standing Orders Act, 1946 - Trade Union Act, 1926 - Workmen Compensation Act, 1923, Employees State Insurance Act, 1948, Employees Provident Fund and Miscellaneous Provision Act, 1952, Payment of Gratuity Act, 1972. Payment of Wages Act 1936, Minimum wages Act, 1948-Payment of Bonus Act, 1965. Tamil Nadu Shops and Establishments Act.

TEXT BOOKS

- 1. Decenzo and Robbins, "Human Resource Manageme"t, Wilsey, 12th edition, 2015.
- 2. Prasad L.M., "Human Resource Managemen", 3rd edition, Sultan Chand, New Delhi, 2014.

- 1. Biswajeet Pattanayak,"Human Resource Manageme"t, 3rd edition, Eastern Economy Edition, New Delhi, 2010.
- 2. C.B. Gupta, "Human Resource Managemen", 13th Edition, Sultan Chand, New Delhi 2011.
- 3. V.S.P. Rao, "Human Resource Managemen", 3rd edition, Excel Books, New Delhi, 2010.
- 4. Frank B. Cross and Roger LeRoy Miller, "The Legal Environment of Business Text and case", 9th Edition, Cengage Learning, 2015.

HSS18R008		ENTRE	PRENEURSH	IIP	L	T	P	C		
HSS16KUU6		DEVI	ELOPMENT		3	0	0	3		
Prerequisite	Nill									
Course	Humanities	Elective								
Category										
Course	Theory									
Type										
Objective(s)	entrepreneu through and into reality course dea businesses effectivenes	this course focuses on the entrepreneurial process and the different kinds of intrepreneurial outcomes. Topics covered include opportunity identification brough analysis of industry niches, skills needed in order to turn an opportunity into reality, business plans, launch decisions, and obtaining risk capital. This ourse deals with the problems and challenges facing the management of usinesses in raising funds, marketing products and services, improving affectiveness and flexibility, and achieving growth.								
Course Outc	ome(s)									
CO1		more insights nk creatively al goals.								
CO2		and promotes business worl								
CO3	It focuses	on women e explains opera						siness		
CO4	_	the role of gov and organizati		_	entrep	reneursh	ip amoi	ng the		
CO5		emerging con re insights into	_	_	_	~ ~		ts and		
Mapping of	COs with AB	ET Sos								
CO\SO	SO1	SO2	SO3	SO4	SO5	!	SO6			
CO1				M			N	1		
CO2	Н		Н							
CO3	Н	H	M							
CO4		H		M	1		N			
CO5							F	<u>I</u>		

INTRODUCTION

Concepts of entrepreneur, entrepreneurship and entrepreneur - Characteristics and competencies of a successful entrepreneur - General functions of an entrepreneur - Type of entrepreneurs - Role of entrepreneur in economic development - Distinction between an entrepreneur and a manager - Entrepreneur and Intrepreneur.

GROWTH OF ENTREPRENEURSHIP

Emergence of entrepreneurship - Economic and non economic factors for stimulating entrepreneurship development - Obstacles to entrepreneurship development in India - Growth of entrepreneurship in India.

WOMEN AND ENTREPRENEURSHIP

Concept of women entrepreneurship - Reasons for growth of woman entrepreneurship - Problems faced by them and remedial measures.

ROLE OF THE GOVERNMENT IN ENTREPRENEURSHIP DEVELOPMENT

Concept and meaning of entrepreneurship development - Need for entrepreneurship development programmes (EDPs) - Objectives of EDPs - Organizations for EDPs in India; NIESBUD, SISI – their roles and activities.

VENTURE PROMOTION AND PROJECT FORMULATION

Concept of projects classification of projects and project report - Project identification and selection - Constraints in project identification - Techniques of Project Identification, Significance - contents - formulation of project report - Need for Project Formulation - Elements of project Formulation

TEXT BOOKS

- 1. Michael H Morris, "Corporate Entrepreneurship and Innovation in Corporation", 7th Edition, CENGAGE Learning, Delhi, 2010
- **2.** Jerry Katz, "Entrepreneurship Small Busines", 5th edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.

- 1. Khanka S.S. "Entrepreneurial Development", 1st edition, S.Chand and Company Limited, New Delhi, 2013.
- 2. Prasama Chandra, "Projects: Planning, Analysis, Selection, Implementation and Review", 2nd edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1996.
- **3.** Robert D. Hisrich, "Entrepreneurship", 10th edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2017.

HSS18R009	C	OST ANALY	SIS AND CO	NTROL	L	T	P	C			
				TITOL	3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory	heory									
Type											
Objective(s)	This course	e in meant to	exhibit the	concepts or	ı costii	ng by d	lescribii	ng its			
		ypes and cost									
		that can be									
		eak even anal									
	-	Students are			-		dard co	sting,			
		ed costing, etc	to manage an	d control cost	effecti	vely.					
Course Outo											
CO1		the basics of C									
CO2	-	cost by apply	ing tools like	Marginal cost	ting, C	VP analy	sis and	other			
	applications										
CO3	Enabled to	use Budgets fo	or controlling of	ost in Manuf	acturin	g or Pro	duction				
	Centre.										
CO4		st standards ar		amining the	applica	tion of S	tandard	l			
		Production Co									
CO5		ing the applica	tion of variou	s strategic co	st alterr	natives in	ncluding	g			
	Activity bas										
	COs with AB		T	1			1				
CO\SO	SO1	SO2	SO3	SO4	SO5		SO ₆				
CO1								HF			
CO2	Н	Н	Н				H	H			
CO3	Н		M			H					
CO4	Н	H	M	Н							
CO5							I	Ŧ			

INTRODUCTION TO COSTING

Costing, Elements of costing, Types of cost, Preparation of cost sheet.

COST ANALYSIS

Marginal costing, Cost - volume - Profit analysis, Break-Even- Analysis, Break - Even - Chart, Applications.

CONTROL TECHNIQUES

Budgeting and Budgetary control, Types of Budgets , Preparation of purchase Budget, Flexible budgets, Cash Budget, Sales Budget, Materials Budget, Master Budget, Zero based Budgeting.

STANDARD COSTING

Types of Standards, Setting up of standards, Advantages and Criticism of Standard Costing – Control through variances.

ACTIVITY BASED COSTING

Transfer Pricing, Target costing, Life Style Costing, Activity Based Costing (only theory).

TXT BOOKS

- 1. K.Saxena & C.D. Vashist, "Advanced Cost Accounting and Cost Systems", 2nd Edition, V.Sultan Chand & Sons Publishers. 2014
- 2. S.P. Jain & K. L. Narang, "Advances Cost Accounting", Kalyani Publishers, 1st Edition, 2017.

- 1. J. Blocher, K. H. Chen, G. Cokins and T. W. Lin., "Cost Management: A Strategic Emphasis", Irwin/McGraw-Hill, 3d edition, 2008
- 2. Don R. Hansen, Maryanne M. Mowen, "Cornerstones of Cost Management", 6th Edition, Cengage Learning, 2015
- 3. Roger Hussey, Audra Ong, "Strategic Cost Analysis", Business Expert Press, 2012

HSS18R010		PRODUC	T DESIGN A	ND	L	T	P	C		
HSSIOKUIU		DEV	ELOPMENT		3	0	0	3		
Prerequisite	Nil									
Course	Humanities	Elective								
Category										
Course	Theory									
Type										
Objective(s)	and Develo also aims recognition setting up, product's r processes ar work. Product of product to	This course aims to clarify the principles and basic concepts of Product Design and Development. Including organizations and understanding of its products. It also aims at enhancing the quality of products. Product Design means recognition of a new product need, information gathering and requirements setting up, unambitious-clear and complete specification list, study on the product's mechanical architecture, selection of materials and production processes and engineering the various components necessary to make the product work. Product Development means identification of market opportunity, creation of product to appeal to the identified market, and finally, testing, modifying and optimizing the product until it is ready for production.								
Course Outc		ine product an	itil it is leady l	or productions	<u> </u>					
CO1		concepts rela	ited to design a	and developme	ent of	New pro	duct			
CO2		the structure	d approach to					, and		
CO3	processes.		g to simulatin					turing		
CO4			ies related to c				logy			
CO5			nges related to	Economic an	alysis.					
Mapping of C			1	T	ı		1			
CO\SO	SO1	SO2	SO3	SO4	SO5	<u> </u>	SO6			
CO1		M								
CO2	Н			Н						
CO3	Н	Н					N			
CO4		M	Н	M			F			
CO5	2(2)						N	1		

NEW PRODUCT IDEA

Definition – Design by Evolution and by Innovation - factors to be considered for product design – Production-Consumption cycle – The morphology of design – Primary design Phases and flowcharting. Role of Allowance, Process Capability, and Tolerance in Detailed Design and Assembly Product strategies, Market research – identifying customer needs – Analysis of product – locating ideas for new products, Selecting the right product, creative thinking, curiosity, imagination and brain storming - product specification.

NEW PRODUCT DESIGNING

Task - Structured approaches - clarification - search - external and internal - systematic exploration - conception, selection - methodology benefits. The value of appearance - principles and laws of appearance - incorporating quality, safety, and reliability into design. Man-machine considerations - Designing for ease of maintenance.

ROLE OF TECHNOLOGY IN DESIGNING

Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing process – Needs for industrial design-impact – Industrial design process – Technology driven products - user driven products – assessing the quality of the product.

METHODS AND PRINCIPLES OF DESIGNING

Methodologies and tools - Design axioms - Design for assembly and evaluation - Minimum part assessment - Taguchi Method - Robustness assessment - Manufacturing process rules - Designer's tool kit - Computer aided group process rules - Designer's tool kit - Computer aided group technology - Failure Mode Effective Analysis - Design for minimum number of parts - Development of modular design - Minimising part variations - Design of parts to be multifunctional, multi-use, ease of fabrication - Poka Yoka principles.

FEASIBILITY ANALYSIS

Estimation of manufacturing cost – cost procedures – Value Engineering - reducing the component cost and assembly cost – minimizing the system complexity – Basics and Principals of prototyping – Economic Analysis: Break even analysis. Classes of exclusive rights – Patents – Combination versus aggregation – Novelty and Utility – Design patents – Paten disclosure – Patent application steps - Patent Office prosecution - Sales of paten rights - Trade marks – copy rights.

TEXT BOOKS:

- 1. Karl.T.Ulrich, Steven D.Eppinger, Product Design and Development, McGraw Hill International, 6th Edition, 2016.
- 2. A.K.Chitale and R.C.Gupta, "Product Design and Manufacturing", 3rd edition, Prentice Hall of India Private Limited, New Delhi, 2005.

- 1. Richard Crowson, "Product Design and Factory Development", 2nd Edition, crc Press, 2005.
- 2. Thomke, Stefan, and Ashok Nimgade. "IDEO Product Development." Boston, MA: Harvard Business School Case 9-600-143, June 22, 2000.
- 3. George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw-Hill Higher Education, 4th Edition, 2012.
- 4. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2004, Pearson Education

CESS	L	T	P	C					
ING	3	0	0	3					
his course aims to clarify the principles and basic concepts of Business Process									
ngineering. This course focuses on both quantitative and qualitative analytical									
ills and models essential to operations process design, management, and									
				rough					
ncreased revenue	s and d	ecreased	costs.						
<u> </u>									
and tools use	ed for	Busin	ess P	rocess					
~ /									
nt/cost analysis a	nd its ii	mpact or	the bu	siness					
		•	1 .1	. ,					
nt of business re	-engine	ering an	d the f	actors					
in Business Pr	rocess	Reengir	neering	with					
		\mathcal{E}	δ						
SO4	SO5	3	SO6						
			H	H					
Н			I	H					
M			I	H					
	ciples and basic con both quantitative perations process manufacturing or the student to pany which serves increased revenue. Business Process and tools use fit/cost analysis are in Business Process in Business Process and tools use fit/cost analysis are to business residues and tools use fit/cost analysis are to business residues and tools use fit/cost analysis are to business residues and tools use fit/cost analysis are to business process and tools use fit/cost analysis are to business process and tools use fit/cost analysis are tools are tools and tools use fit/cost analysis are tools are	ciples and basic concept on both quantitative and perations process designanufacturing oriented on the student to play a soany which serves satisfingereased revenues and described and tools used for fit/cost analysis and its in the of business Process SO4 SO5	ciples and basic concepts of Buston both quantitative and qualitative perations process design, manamanufacturing oriented companions the student to play a signification which serves satisfied custon creased revenues and decreased Business Process Reengineering and tools used for Businest or Business Process Reengineering and to Business Process Reengineering and In Business Process Reengineering In Business Process	ciples and basic concepts of Business Propertions process design, management manufacturing oriented companies. The rethe student to play a significant role pany which serves satisfied customers that ncreased revenues and decreased costs. Business Process Reengineering. and tools used for Business Profit/cost analysis and its impact on the business re-engineering and the formula business process Reengineering. SO4 SO5 SO6 H					

BASIC CONCEPTS

Introduction to BPR Definition; the paradigm shifts in production; the positioning concept; the re-engineering visions; the benefits of business re-engineering.

METHODOLOGIES FOR BPR

Methodologies and Tools for BPR, Process management; dynamic business re-engineering change framework; steps to reengineer the process.

MODELLING THE BUSINESS

Tools used in Modelling the Business: flow-charting, business activity maps, relational diagrams, benefit/cost analysis. The enabling role of information technology in business reengineering.

CHANGE MANAGEMENT

Change Management, Planned changes in business re-engineering projects; challenges of business change; business change development. Success factors in re-engineering. The

assessment of business re-engineering.

BEST PRACTICES IN BPR

Best Practices in BPR, Case studies: Bell Atlantic, Nissan, Chrysler, Xerox, and Hewlett Packard etc.

TEXTBOOKS:

- **1.** Ali K. Kamrani, Maryam Azimi (2011). "New Methods in Product Design: New Strategies in Reengineering (Engineering and Management Innovation)". CRC Press. 1st ed.
- 2. Bassam Hussein (2008). PRISM: "Process Reengineering Integrated Spiral Model. VDM Verlag Dr. Mueller e.K.

- **1.** Harmon, P. (2007), Business Process Change: A Guide for Business Managers and BPM and Six Sigma Professionals, Elsevier/Morgan Kaufmann Publishers.
- 2. R. Anupindi et al. (2006), Managing Business Process Flows: Principles of Operations Management, Pearson Education Inc.

HSS18R012	POI	LITICAL EC	ONOMY		L	T	P	C		
115516K012					3	0	0	3		
Prerequisite	Nil									
Course	Humanities	Elective								
Category										
Course	Theory									
Type										
Objective(s)	examines the explored are political proclass focused	This course provides an introduction to the political economy of India. It examines the interplay of politics and economics. Some of the key themes to be explored are globalization, economic reform, poverty, redistribution, federalism, olitical protest, public goods delivery, gender, and ethnic politics. Although this lass focuses specifically on India, a number of the themes discussed in this ourse are functions of institutions, rights, Party Systems and challenges.								
Course Outo	come(s)									
CO1			epts of political ideologies.		y ana	lyse the	e signi	ficant		
CO2		et, integrate a	res of the cornd critically a							
CO3			arty system th	eir evolution	and ro	e in the	econom	ıy		
CO4			eological of In							
CO5	and social tr	ransformation	g and apprecia	tion of India	underg	oing ma	jor ecoi	nomic		
	COs with AB		T = = =	Γ	1		T			
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO1	**		M							
CO2	Н		Н	Н	7.7					
CO3	**		M		Н					
CO4	Н		M							
CO5			M							
Course Toni	c(e)									

INTRODUCTION TO POLITICAL ECONOMY

Political Economy as a Method, perspectives, Politics as Reproduction of Social Relations, State and Social Opportunity, Politics of Rent Seeking -Evolution of State in India: Historical Roots of planning, Redistribution.

INDIAN CONSTITUTION

The Pre-ample- Fundamental rights and duties, Directive Principles- Offices of the President, Prime Minister, Cabinet Government, Chief Election Commissioner, and Governor – Parliamentary system and Procedures - The Judiciary system.

PARTY SYSTEM

National and regional political parties, ideological and social bases of parties; patterns of coalition politics; Pressure groups, trends in electoral behaviour; changing socio- economic profile of Legislators.

INDIAN POLITICAL THOUGHT:

Political Ideologies: Liberalism, Socialism, Marxism, Fascism, Gandhism and Feminism -

Dharamshastra, Arthashastra and Buddhist traditions; Sir Syed Ahmed Khan, Sri Aurobindo, M.K. Gandhi, B.R. Ambedkar, M.N. Roy.

CHALLENGES TO INDIAN DEMOCRACY

Uneven Development of Regions in India – Communalism – Regionalism – Violence – Corruption – environmental degradation- illiteracy – Population.

TEXT BOOKS

- 1. Charles Sackrey, Geoffrey Schneider, Janet Knoedler, Introduction to Political Economy, Dollars & Sense, 8th Edition, 2016.
- 2. Robert.S.Dimand, Review of Political Economy: An Introductory Text, 1st Edition, Routledge, 2008.

- **1.** Barry R. weingast and Donald a.Wittman, Handbook of Political Economy, 1st Edition, Oxford University Press, New York, 2006.
- 2. Ed. Sanjay Ruparelia; Sanjay Reddy; John Harriss & Stuart Corbridge, Understanding India's New Political Economy: A Great Tranformation, Routledge 1st Edition edition 2011.
- 3. M.Laxmikanth, Indian Polity, 4th Edition, McGraw Hill Education, New Delhi,2017.
- **4.** Niraja Gopal Jayal, Pratap Bhanu Mehra, The Oxford Companion to Politics in India: Student Edition, Oxford Press, 2011.

HSS18R013		PROFESS	IONAL ETH	ICS	L 3	T 0	P	C 3		
Prerequisite	Nil					<u> </u>	U			
Course	Humanities	Elective								
Category										
Course	Theory									
Type	<u> </u>									
Objective(s)	problems a ethics will presented in Theory including primarily from the cases are with the primarily from the cases are with the case a	It is essential for professionals in any field to have an understanding of the ethical problems and principles in their field. The general principles of professional ethics will be examined, as well as the distinctive problems. This course is presented in three parts: theory; case studies; and research and presentation. Theory includes ethics and philosophy of engineering. Historical cases are taken primarily from the scholarly literatures on engineering ethics, and hypothetical cases are written by students. It will allow students to explore the relationship between ethics and engineering and apply classical moral theory and decision making to engineering issues encountered in academic and professional careers.								
Course Outc										
CO1		multiple ethic					n or pra	ctice		
CO2		own ethical va								
CO3		ritical thinking Ficulties of bri			udgen	nent and	d unde	rstand		
CO4		e knowledge og ning, internshi			oom a	ctivities	, such a	.S		
CO5	Manage diff	fering opinions with ethical characteristics through the contraction of the contraction o	s on complex e	ethical scenarionable to hold m						
Mapping of	COs with AB	SET Sos								
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO1				Н						
CO2	Н		_	Н			Н			
CO3		Н	M	Н						
CO4	Н		M	Н			M			
CO5	Н		M	Н		Н				

ENGINEERING ETHICS

Functions of Being a Manager – Stock holder and stakeholder management – Ethical treatment of employees - ethical treatment of customers- supply chain management and other issues.

ENGINEERING AS SOCIAL EXPERIMENTATION

Senses of Ethics – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professions and Professionalism – Professional ideals and virtues – Theories about right action – Self-interest – Customs and religion – Use of Ethical Theories.

ENGINEER RESPONSIBILTY FOR SAFETY

Corporate social responsibility - Collegiality and loyalty - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Discrimination.

RESPONSIBILITY AND RIGHTS

Moral imagination, stake holder theory and systems thinking - One approach to management Decision – making Leadership.

GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Sample code of conduct.

TEXT BOOKS

- 1. Mike Martin and Roland Schinzinger, Introduction to Engineering Ethics, 2nd Edition, McGraw Hill Higher Education, New Delhi, 2010.
- 2. Charles D Fledderman, Engineering Ethics, 4th Edition, Pearson Education, Delhi, 2011.

- 1. R.S.Naagarazan, Text book on Professional Ethics and Human Values, New Age International, 2007.
- 2. Gail Baura, Engineering Ethics- An Industrial Perspective, 1st Edition, Academic Press, 2006.
- 3. Charles e. Harris, Michael s. Pritchard and Michael J. Rabins Texas, Engineering Ethics-Conecpts and Cases, 4th Edition, Cengage Learning, 2009.
- 4. Charles Byms Fleddermann, Engineering Ethics, 3rd Edition, Pearson Prentice Hall, 2008.
- 5. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2013.
- 6. Dr.V.Jeyakumar, Professional Ethics in Engineering, Lakshmi Publication, Chennai, 2014.

HSS18R014		OPERATIO	ONS RESEA	RCH	L	T	P	C			
1155101014		OTERATIO	ONS RESEA	KCII	3	0	0	3			
Prerequisite	Nil										
Course	Humanities	Elective									
Category											
Course	Theory										
Type											
Objective(s)		This subject will provide students with ability to understand and analyze nanagerial problems in industry so that they are able to use resources (capitals,									
		staffing, and									
		of formulating									
		problems in in									
C 0 4		proaches and	computer tools	s in solving re	eal pro	olems in	industr	у.			
Course Outo		1 1 1	-4:1	1 1.1. C	41	11 .1 .		C			
CO1	=	l develop oper	ational researc	n models froi	n the v	erbai de	scriptio	n oi			
	the real Sys										
CO2		ouild and solve				nment M	Iodels				
CO3		natical softwar									
CO4	_	eport that desc			_	1 /	-				
		propose recom			derstan	dable to	the dec	ısıon			
CO.5		cesses in Mana			DT 4		1				
CO5		lesign new sim	_			_					
	_	develop critic	al thinking and	d objective an	alysis	of decisi	on prob	olems.			
	COs with AB			T	1		•				
CO\SO	SO1	SO2	SO3	SO4	SO5		SO ₆				
CO1	Н										
CO2	Н	Н									
CO3		Н		Н							
CO4	M						ŀ	I			
CO5		Н					I	<u> </u>			

INTRODUCTION TO LINEAR PROGRAMMING

Introduction to applications of operations research in functional areas of management - Linear Programming - formulation, solution by graphical and simplex methods (Primal - Penalty, Two Phase), Special cases - Dual simplex method.

TRANSPORTATION MODELS AND ASSIGNMENT MODELS

Transportation Models (Minimising and Maximising Cases) – Balanced and unbalanced cases – Initial Basic feasible solution by N-W Corner Rule, Least cost and Vogel's approximation ethods - Check for optimality - Solution by MODI / Stepping Stone method - Cases of degeneracy - Transshipment Models - Assignment Models (Minimising and Maximising Cases) – Balanced and Unbalanced Cases - Solution by Hungarian and Branch and Bound Algorithms - Travelling Salesman problem - Crew Assignment Models.

INTEGER LINEAR PROGRAMMING AND GAME THEORY

Solution to pure and mixed integer programming problem by Branch and Bound and cutting

plane algorithms - Game Theory - Two person Zero sum games - Saddle point, Dominance Rule, graphical and LP solutions.

REPLACEMENT MODELS AND DECISION THEORY

Replacement Models-Individuals replacement Models (With and without time value of money) – Group Replacement Models - Decision making under risk – Decision trees – Decision making under uncertainty.

PROJECT MANAGEMENT METHOD AND SIMULATION

PERT / CPM — Drawing the network, computation of processing time, floats and critical path. Resource leveling techniques - Application of simulation techniques for decision making.

TEXT BOOKS

- 1. Kalavathy S, Operations Research, Vikas Publishing House, 4TH Edition, 2013.
- 2. Paneerselvam R., Operations Research, Prentice Hall of India, 2ND Edition, 2006.
- 3. Tulsian P.C, Vishal Pandey, Quantitative Techniques (Theory and Problems), Pearson Education, Asia, First Indian Reprint 2002.

- 1. D.S.Hira, Problems in Operations Research, Kindle Edition, S.Chand, 2010.
- 2. Prem Kumar Gupta and D.S. Hira, Operations Research, S. Chand, 2016.
- 3. R.C.Mishra, Principles of Operations Research, 1st Edition, New Age International 2011.
- 4. Kanti Swarup, P.K.Gupta and Man Mohan, Operations Research, 15th Edition, Sultan Chand and Sons 2010.

HSS18R015	T	OTAL OHAL	ITY MANAC	TEMENT	L	T	P	C
HSS16KU13	1,	OTAL QUAL	III I WIANAC	FEIVIEIN I	3	0	0	3
Prerequisite	Nil							
Course	Humanities	Elective						
Category								
Course	Theory							
Type								
Objective(s)		-	dents with the	_			-	
			Quality Manag					
			d the impact of	1 "		-		
			ss of an organ					
			quality. Stude					
			anagement te					
			processes and		s to m	anageme	ent desc	ribing
_		nd recommend	ling ways to in	nprove them.				
Course Outo								
CO1	Understand	the role and n	ature of quality	y in evolving	interna	ational ed	conomi	3
	conditions							
CO2			uality Manage					
CO3	the quality	encounter p	rocess, includ	ling supporti	ng fac	ilities a	and cus	tomer
	1	ts/characteristi						
CO4			nent methods a					
CO5	Frame Man	agement strate	egy methods, in	ncluding iden	tificati	on, deve	lopmen	t,
			ack processes					
Mapping of	COs with AB	ET Sos						
CO\SO	SO1	SO2	SO3	SO4	SOS	<u> </u>	SO ₆	
CO1	Н						N	Л
CO2		M		M			H	I
CO3	Н	Н		Н			N	1
CO4	Н						N	Л
CO5			M	M			N	1
Course Toni	o(c)							

INTRODUCTION TO QUALITY MANAGEMENT

Definitions – TOM framework, benefits, awareness and obstacles - Quality – vision, mission and policy statements - Customer Focus – customer perception of quality, Translating needs into requirements, customer retention. Dimensions of product and service quality. Cost of quality.

PRINCIPLES AND PHILOSOPHIES OF QUALITY MANAGEMENT

Overview of the contributions of Deming, Juran Crosby, Masaaki Imai, Feigenbaum, Ishikawa, Taguchi, Shingeo and Walter Shewhart - Concepts of Quality circle, Japanese 5S principles and 8D methodology.

STATISTICAL PROCESS CONTROL AND PROCESS CAPABILITY

Meaning and significance of statistical process control (SPC) – construction of control charts for variables and attributed - Process capability – meaning, significance and measurement – Six sigma concepts of process capability - Reliability concepts – definitions, reliability in series and parallel, product life characteristics curve - Business process re-engineering (BPR) – principles,

applications, reengineering process, benefits and limitations.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Quality functions development (QFD) – Benefits, Voice of customer, information organization, House of quality (HOQ), building a HOQ, QFD process. Failure mode effect analysis (FMEA) – requirements of reliability, failure rate, FMEA stages, design, process and documentation.

TAGUCHI TECHNIQUES

Taguchi techniques – introduction, loss function, parameter and tolerance design, signal to noise ratio - Seven old (statistical) tools - Seven new management tools - Bench marking and POKA YOKE.

TEXT BOOKS:

- 1. Poornima M.Charantimath., Total quality management, Pearson Education, 2ND Edition, 2011.
- **2.** Dale H.Besterfield et al, Total Quality Management, Perarson Education, Thrid edition, (First Indian Reprints 2004).

- 1. Shridhara Bhat K, Total Quality Management Text and Cases, Himalaya Publishing House, First Edition, 2002.
- 2. Jams R. Evans, Total Quality: Management, Organisation and strategy, 4th Edition, South-Western College, 2004.
- 3. Vincent K.Omachonu, Joel E.Ross, Principles of Total Quality, 3rd Edition, CRC Press, 2004.
- 4. S.Rajaram, M.Sivakumar, Total Quality Management, Wiley Publishers, 1st Edition, 2008.

HSS18R016		ADVANO	CED SOFTS	KILLS	L 3	T 0	P 0	C 3			
Prerequisite	Nil										
Course Category	Humanitie	s Elective									
Course Type	Theory										
Objective(s)	env	vironments.		communication			•				
		2. To build quantitative and analytical reasoning abilities for industry readiness.									
	3. To	3. To develop logical decision-making and problem-solving skills.									
		4. To improve verbal comprehension, grammar, critical reasoning, and articulation.									
		5. To enhance data interpretation skills required in competitive and corporate scenarios.									
Course Outco	me(s)										
CO1	Demonstra profession		oral, written	, and cross-cu	ıltural	communi	cation i	n			
CO2	Apply qua	_	itude technic	ques to solve 1	ousines	s and tec	hnical				
CO3	Apply logic problems.	cal reasonir	ng to analyze	patterns, seq	uences,	and dec	ision				
CO4		oal reasoning ation tasks.	g and compr	ehension tech	niques	to workp	olace				
CO5	Interpret a decision m	-	abular, grapl	nical, and case	e-based	l data to s	support				
Mapping of C	Os with ABET	Sos									
CO\SO	SO1	SO2	SO3	SO4	SO5	5	SO6				
CO1			Н	M		Н					
CO2	M	M									
CO3	Н										
CO4			Н								
CO5	M						F	ł			

EFFECTIVE COMMUNICATION

Comprehending Ability, Business Vocabulary, Speed Reading, Non-Verbal Communication, Cross Cultural Communication, Meeting Management, Technology trend awareness

QUANTITATIVE ABILITY

Time & Work, Time-Speed-Distance, Permutation & Combination Probability, Geometry & Mensuration, Number Properties, Ratio & Proportion, Mixtures & Alligation, Percentages, Profit-Loss-Discount, Averages, Progression, Higher Mathematics

LOGICAL ABILITY

Non-Verbal Reasoning, Deductive & Inductive Reasoning, Binary Logic, Number Series, Clocks, Calendars

VERBAL ABILITY

Reading Comprehension, Parajumbles, Critical Reasoning, Subject-Verb Agreement, Synonyms & Antonyms, Grammar Reading Comprehension & Logic Miscellaneous Verbal questions

DATA INTERPRETATION

Line Charts, Bar Charts, Pie Charts, Venn diagrams, Caselets, Data tables.

Text Books

- 1. Meenakshi Raman & Sangeeta Sharma, Technical Communication, Oxford University Press.
- 2. Arun Sharma, Quantitative Aptitude, McGraw Hill.
- 3. R.S. Aggarwal, A Modern Approach to Logical Reasoning, S. Chand.
- 4. Norman Lewis, Word Power Made Easy, Goyal Publishers.

Reference Books:

- 1. Barun Mitra, Personality Development and Soft Skills, Oxford.
- 2. K.N. Krishnaswamy, Communication Skills for Professional Students.
- 3. Gajendra Singh, Data Interpretation and Logical Reasoning, Wiley.
- 4. S.P. Bakshi, Objective General English, Arihant.

BASIC ENGINEERING

EEE18R172	BASIC ELECTRICAL ENGINEERING				L	T	P	С		
EEE10K1/2	DASIC	ELECTRIC	AL ENGINE	EKING	3	1	2	5		
Prerequisite	Nil									
Course	Basic Engin	eering								
Category										
Course	Integrated C	Integrated Course								
Type										
Objective	To focus the	To focus the fundamental ideas of the Electrical Engineering by providing wide								
	exposure to	the basic cond	cepts of Electr	rical Engineeri	ng such	as DC	Circuits	s, AC		
	Circuits, ele	ctrical machin	es, and Electr	ical installatio	ns etc.					
COURSE OU										
CO1			ricity in DC ci							
CO2			ectricity in A							
CO3				nciples of DC			ransfor	mers		
CO4	_			nciple of AC M						
CO5	•		nts of Low Vo	ltage Electrica	l Installa	ations				
Mapping of C	COs with AB	ET Sos								
CO\SO	SO1	SO2	SO3	SO4	SO5		SO ₆			
CO1	Н	M								
CO2	Н	M								
CO3	M	M					L			
CO4	M	M					L			
CO5	M	M		L			M			

Course Topic(s)

UNIT 1: DC CIRCUITS

DC Circuits: Electrical quantities – Electric Circuit Elements - Resistors - Inductors - Ccapacitors - Ohm's Law - Kirchhoff's Laws - Series and Parallel circuits - Analysis of DC circuits – Mesh - Nodal – Superposition - Thevenin - Norton Theorems - Simple problems

UNIT II: AC CIRCUITS

Sinusoidal functions - Phasor representation - Real power - Reactive power - Aapparent power - Power factor - RMS value - Average value - Form and Peak factors - Analysis of single-phase AC series circuits consisting of RL, RC, RLC combinations - Problems - concept of three phase system.

UNIT III: DC MACHINES AND TRANSFORMERS

DC Machines: Construction and working principle of DC Generator and DC Motor - EMF equation - Torque equation - Related problems

Transformer: Construction - working and types - Ideal and practical transformer - Equivalent circuit - Losses in transformers - Regulation and Efficiency -problems

UNIT IV: AC MACHINES

Synchronous machine: Construction - working of alternator - EMF Equation - Problem - Working principle of synchronous motor

Three phase induction motor: Constructional details - Principle of operation - Types - Torque-slip characteristics - Starting torque - Relation between torque and slip - Losses and efficiency. Single phase induction motor: Construction - Working principle - Types of single phase induction motor

UNIT V: ELECTRICAL INSTALLATIONS

Components of LT Switchgear - Switch Fuse Unit (SFU) - MCB - ELCB - MCCB - Domestic wiring - accessories - types - Staircase wiring - Fluorescent tube circuits - Earthing - Types of Batteries - Important Characteristics for Batteries - Elementary calculations for energy consumption - power factor improvement and battery Backup

LIST OF EXPERIMENTS

- 1. Verification of Kirchoff's Laws.
- 2. Verification of Mesh and Nodal analysis
- 3. Verification of Thevinin's and Norton's theorems
- 4. Measurement of electrical quantities-voltage current, power & power factor in RL and RC series circuits
- 5. Determine the power and power factor of RLC series circuit
- 6. Open circuit and load characteristics of Separately excited DC Generator
- 7. Open circuit and load characteristics of Self excited DC Generator
- 8. Draw the characteristic between output power versus efficiency of DC shunt motor
- 9. Verification of turns ratio on single phase transformer
- 10. Load test on single phase transformer
- 11. Load test on three phase squirrel cage induction motor.
- 12. Load test on single phase induction motor.
- 13. Load test on Alternator
- 14. Study of basic electrical installation components for LT switchgear
- 15. Residential house wiring using fuse, two way switches and lamp
- 16. Wiring layout for Fluorescent lamp
- 17. Experiment for Calculation of charging and discharging current of battery

TEXT BOOK(S):

- 1. V.K. Mehta, "Principles of Electrical Engineering and Electronics", S. Chand & Company Ltd, 2012
- 2. Kothari D P and Nagrath I J, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. Mithal G K, Electronic Devices & Circuits, Khanna Publications, 1997

REFERENCE(S):

- 1. T. Thyagarajan, "Fundamentals of Electrical and Electronics Engineering", SciTech publications (Ind.) Pvt. Ltd., 3rd Edition, 2015.
- 2. Muraleedharan K.A, Muthususbramanian R and Salivahanan S, "Basic Electrical, Electronics and Computer Engineering" Tata McGraw Hill, 2006.
- 3. Sunil S.Rao., Switchgear Protection and Power system, Khanna Publishers, New Delhi, 13th Edition, 1999.
- 4. Ravindranath B., Chander, N., Power Systems Protection and Switch Gear, Wiley Eastern (P) Ltd., Second Edition, 2011.

MEC18R151	I ENG	GINEERING GE	RAPHICS &	DESIGN	L 3	T 0	P 2	C 3	
Prerequisite	Nil				3	0		_ 3	
Course		Basic Engineering							
Category		,8							
Course Type	Theory w	ith Practical							
Objective		se aims to introd	duce the conc	ept of graphi	ic comm	unicatio	n, dev	elop	
	the draw engineering	the drawing skills for communicating concepts, ideas and designs of engineering products, Demonstrate skills in interpreting, and producing engineering drawings accurately and to give exposure to national standards relating to engineering drawing.							
COURSE OU	JTCOMES (CO)							
CO1	Create the	projection of po	oints in all qua	adrants and st	raight lir	nes			
CO2	Construct planes	the projections of	of planes and	solid objects	with refe	er to refe	rence		
CO3		the true shape of ized manner	truncated sol	ids in both th	e manual	and			
CO4	Develop s	surfaces of trunca	ited solids in	both the man	ual and c	omputer	rized 1	nan	
CO5		hographic and is							
Mapping of C	COs with AB	ET Sos							
CO\SO	SO1	SO2	SO3	SO4	SO5	5	SO6		
CO1		Н							
CO2	Н								
CO3	Н			Н	Н	l	M		
CO4		Н				I	Η		
CO5		Н	M			I	Η		

Unit 1: Projection of Points and Straight Lines

Importance of graphics – use of drafting instruments – BIS conventions and specifications – size, layout and folding of drawing sheets – lettering dimensioning and scales - Projection of points, located in all quadrants - projection of straight lines located in the first quadrant, determination of true lengths and true inclinations

Unit 2: Projection of Planes and Solids

Projection of polygonal surface and circular lamina located in first quadrant inclined to one or both reference planes-Projection of solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method

Unit 3: Section of Solids

Section of simple solids like prisms, pyramids, cylinder and cone in vertical position by cutting planes inclined to any one of the reference planes, obtaining true shape of section

Unit 4: Development of Surfaces

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones

Unit 5: Orthographic and Isometric Projection

Orthographic principles – missing view - free hand sketching in first angle projection from

pictorial views. Principles of isometric projection – isometric view and projections of simple solids, truncated prisms, pyramids, cylinders and cones. Introduction to CAD software – menus and tools – drafting platform demonstration

Practical Modules

- 1. Construction of conic sections using CAD software
- 2. Construction of simple planes using exclusive commands like extend, trim etc.,
- 3. Construction of 3D model solids and sectional views
- 4. Generating 2D orthographic blue prints from 3D part models
- 5. Vectorization of simple building plan and elevation

Text Book(s):

- 1. Basant Aggarwal and C. Aggarwal, Engineering Drawing, McGraw-Hill, 2013.
- 2. N.S. Parthasarathy, Vela Murali, Engineering Drawing, Oxford University Press, 2015.
- 3. K. Venugopal, Engineering Drawing + AutoCAD, New Age; Fifth edition, 2011.

Reference(s):

- 1. Shah, M.B., and Rana, B.C., Engineering Drawing, Pearson 2009
- 2. Natarajan, K.V., A Text Book of Engineering Graphics, 21st Edition, Dhanalakshmi Publishers, Chennai, 2012.
- 3. Paul Richard, Jim Fitzgerald., Introduction to AutoCAD 2017: A Modern Perspective, Pearson, 2016.
- 4. Bhatt, N.D., Engineering Drawing, Charotar publishing House, New Delhi, 53trd Edition, 2014
- 5. Luzadder and Duff, "Fundamentals of Engineering Drawing", Prentice Hall of India Pvt. Ltd., 2009.
- 6. Venugopal, K., Engineering Graphics, New Age International (P) Limited, 2009.

CCE40D4#4	SE18R171 PROGRAMMING FOR PROBLEM SOLVING		L	Т	P	С		
CSE18R171	PROGRA	MMING FOR	R PROBLEM	SOLVING	3	1	2	5
Prerequisite	Nil				•	•		
Course	Basic Engin	Basic Engineering						
Category								
Course	Integrated C	Integrated Course						
Type								
Objective	To make the	e students to u	nderstand the	basic concepts	of prog	grammin	ng langu	ıage,
	rules to be f	followed while	writing a prog	gram and how	to com	pile and	execute	e C
	programs.							
COURSE OU								
CO1			gramming cond					
CO2	-		ing pointers, a	rrays and dyna	amic me	emory al	llocation	1
	Techniques	1						
CO3	Create user	defined data t	types and func	tions to solve	given p	roblems		
CO4	Design an e	fficient algorit	thm for a giver	n problem				
CO5	Build efficie	ent code to sol	ve the real wo	rld problem				
CO6	Elucidate th	e programmin	g constructs o	f C during into	erviews			
Mapping of C	Os with AB	ET Sos						
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6	
CO1	Н							
CO2	Н	Н					M	[
CO3	Н	M		Н			M	[
CO4	Н	Н		Н			Н	
CO5	Н	Н					Н	
CO6			M					

UNIT 1: INTRODUCTION TO PROGRAMMING

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.), Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/ Pseudocode with examples, From algorithms to programs; source code, variables (with data types) variables and memory, locations, Syntax and Logical Errors in compilation, object and executable code, Arithmetic expressions and precedence, Conditional Branching and Loops, Writing and evaluation of conditionals and consequent branching, Iteration and loops.

UNIT 2: ARRAYS AND STRINGS

Arrays (1-D, 2-D), Character arrays and Strings,

UNIT 3: BASIC ALGORITHMS

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

UNIT 4: FUNCTION

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion, Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

UNIT 5: STRUCTURE, POINTERS & FILE HANDLING

Structures, Defining structures and Array of Structures, Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation), File handling (only if time is available, otherwise should be done as part of the lab)

LIST OF EXPERIMENTS

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

TEXT BOOKS

- (i) Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- (ii) E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

REFERENCE BOOKS

(i) Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

MEC18R152	E18R152 ENGINEERING PRACTICE		L	T	P	С				
WIE CTORTOZ		Er (GII (EEIG			3	0	2	3		
Prerequisite	Nil									
Course	Basic Eng	Basic Engineering								
Category										
Course Type	Theory w	Theory with Practical								
Objective	different industry,	Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.								
COURSE OU	TCOMES ((CO)								
CO1	-	Upon completion of this laboratory course, students will be able to fabricate components with their own hands.								
CO2		also get practicanal tolerances po								
CO3		By assembling different components, they will be able to produce small devices of their interest								
Mapping of C	Mapping of COs with ABET Sos									
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO1		Н			M					
CO2	Н	M								
CO3		Н			Н		-			

Lectures & videos:

Detailed contents

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (3 lectures)
- 2. CNC machining, Additive manufacturing (1 lecture)
- 3. Fitting operations & power tools (1 lecture)
- 4. Carpentry (1 lecture)
- 5. Plastic moulding, glass cutting (1 lecture)
- 6. Metal casting (1 lecture)
- 7. Welding (arc welding & gas welding), brazing (1 lecture)

Suggested Text/Reference Books:

- (i) Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- (ii) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- (iii)Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology I" Pearson Education, 2008.
- (iv) Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall

India, 1998.

(v) Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

(ii) Workshop Practice:

- 1. Machine shop (10 hours)
- 2. Fitting shop (8 hours)
- 3. Carpentry (6 hours)
- 4. Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs)
- 5. Casting (8 hours)
- 6. Smithy (6 hours)
- 7. Plastic moulding & Glass Cutting (6 hours)
- *Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

ECE10DAAA	PRINCIPLES OF SIGNALS AND SYSTEMS					T	P	С	
ECE18R220	PRINCIL	LES OF SI	GNALS AN	ND SYSTEMS	3	0	0	3	
Prerequisite	Nil							•	
Course	Basic Engir	asic Engineering							
Category									
Course	Theory	heory							
Type									
COURSE OU	JTCOMES (CO)							
CO1	Identify dif	ferent types	of continuou	s time and discre	te time s	ignals.			
CO2	Identify dif	ferent types	of continuou	s time and discre	te time s	ystems.			
CO3	Analyze sig	Analyze signals using Z Transform and FT.							
CO4	Analyze sig	nals using D	FT and FFT						
CO5	Appreciate	different Dig	gital Filter st	ructures					
Mapping of (COs with AB	ET Sos							
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6		
CO1	Н				Н				
CO2	Н				M				
CO3	Н			Н			Н		
CO4	Н	Н		Н	Н				
CO5	M	M							

UNIT 1: BASICS OF SIGNALS

Basic operations on signals, continuous time and discrete time signals: step, impulse, ramp, exponential and sinusoidal functions

UNIT 2: BASICS OF SYSTEMS

Continuous time and discrete time systems, properties of systems: linearity, causality, time invariance, memory, stability, invertibility. Linear time invariant systems, convolution

UNIT 3: Z-TRANSFORM

Z-transform, region of convergence, properties of Z-transform, inverse Z-transform.

UNIT 4: FOURIER TRANSFORM

Fourier transform (FT) of discrete time signals, properties of FT, relation between Z-transform and FT.

Unit 5: DFT

Discrete Fourier transform (DFT), Properties of DFT, inverse DFT, Fast Fourier transform (FFT), Radix-2 FFT algorithms, butterfly structure

Text Book(s):

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2010.
- 2. V. Krishnaveni, A. Rajeswari, "Signals and Systems", Wiley, 2012

Reference(s):

- 1. Michael J Roberts and Govind Sharma, "Signals and Systems", McGraw Hill, 2010
- 2. M. N. Bandyopadhyaya, "Introduction to Signals and Systems and Digital Signal Processing", PHI, 2008

INT18R171	D	IGITAL PRI	NCIPLES AN	D	L	T	P	C	
IN 1 10K1/1		SYSTEM	DESIGN		3	1	2	5	
Prerequisite	Basic Electr	rical and Elect	ronics Enginee	ering (EEE171	R151)				
Course	Basic Engi	neering							
Category									
Course	Integrated	Integrated Course							
Type									
Objective(s)	• To un	derstand diffe	rent methods	used for the	simp	lification	of Bo	olean	
	Functi	ons.			_				
	• To des	ign and imple	ment combinat	tional circuits.					
	• To des	ign and imple	ment synchron	ous and asynd	chrono	us seque	ntial cir	cuits.	
	To stud	dy the fundam	ental of VHDI	L/ Verilog HD	L.	-			
Course Outo	come(s)								
CO1	Able to des	ign Logic gat	es with multi	functionality	imple	mentatio	n of Bo	olean	
	functions								
CO2	Write Progr	ram for combi	national and s	sequential circ	cuits li	ke Mult	iplexers	, Flip	
		ters using VHI							
CO3	Analyze and	d develop Syno	chronous Sequ	ential circuits					
CO4			chronous Sequ						
CO5	_		c (simple elect		s) with	CMOS/	Memor	y and	
	•		mming logics	concepts					
	COs with AB								
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6		
CO1	H	Н							
CO2	Н	Н					N		
CO3	Н	Н		Н			N		
CO4	Н	Н					N		
CO5	Н	Н					H	ł	

UNIT 1: BOOLEAN ALGEBRA AND LOGIC GATES

Number System-Code Conversion-Boolean algebra & theorems-Binary Arithmetic-Simplification of Boolean functions using Theorem, Karnaugh map and Tabulation method-Logic gates-Multilevel NAND & NOR Circuits implementations.

UNIT 2: COMBINATIONAL LOGIC

Combinational Circuits-Analysis and design procedure-Adder/Subtractor-Serial/Parallel Adder & Subtractor-Decoder & Encoder-Multiplexer& Demultiplexer-Design of Code Conversion Circuits-HDL for Combinational Logic.

UNIT 3: SEQUENTIAL LOGIC

Sequential Circuits-Analysis and design procedure-Flip Flops-Realization of one Flip Flop using other Flip Flops-Shift Registers & Counters-State Reduction & Assignment-HDL for Sequential Logic Circuits.

UNIT 4: ASYNCHRONS SEQUENTIAL LOGIC

Asynchronous Circuits-Analysis and design procedure-Primitive State/Flow table-Minimization

of Primitive State table-State Assignment-Excitation table-Excitation map cycles-Races-Hazards.

UNIT 5: MEMORIES AND LOGICAL PROGRAMMING

Memory Classification-RAM-ROM-memory decoding- Error detection and correction - Programmable Logic Array (PLA)-Programmable Array Logic (PAL) - Application Specific Integrated Circuits.

LIST OF EXPERIMENTS

- 1. Verification of Boolean theorems using digital logic gates
- 2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters, etc.
- 3. Design and implementation of 4-bit binary adder / subtractor using basic gates and MSI devices.
- 4. Design and implementation of parity generator / checker using basic gates and MSI devices.
- 5. Design and implementation of magnitude comparator
- 6. Design and implementation of application using multiplexers
- 7. Design and implementation of Flip-flops
- 8. Design and implementation of Shift registers
- 9. Design and implementation of Synchronous and Asynchronous counters
- 10. Coding combinational circuits using Hardware Description Language (HDL software required)
- 11. Coding sequential circuits using HDL (HDL software required)

TEXT BOOK

1. Morris Mano M, "Digital Design", Pearson Education, 5th edition, 2013.

- 1. Charles H.Roth, Jr., "Fundamentals of Logic Design", Jaico Publishing House, 7th Edition, 2014.
- 2. Donald D.Givone, "Digital Principles and Design", Tata McGraw-Hill, 2003.

PROGRAM CORE

	COMP	UTER ARCI	HITECTURE	AND	L	P	C			
CSE18R174		ORGANIZ	ZATION		3 0		2	4		
Prerequisite	Nil						II.	I.		
Course	Program Cor	Program Core								
Category										
Course	Integrated Co	ourse								
Type										
Objective(s)	_	•	udents about th			-		how		
	each unit wo	rks along with	the architectur	ral and perfo	ormanc	e issues.				
Course Outco	ome(s)									
CO1	Examine fun	ctional units o	of computer, bu	s structure a	and add	ressing 1	mode			
CO2	Apply the kn	owledge of al	gorithms to sol	ve arithmet	ic unit j	problems	s.			
CO3	Demonstrate	single bus, m	ultiple bus orga	anization an	d pipel	ining co	ncepts			
CO4	Analyze RA	M, ROM, Cac	he memory and	d virtual me	mory c	oncepts				
CO5	Evaluate the	various I/O in	iterfaces							
Mapping of (COs with ABI	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	\$	SO5	SO	D6		
CO1			Н							
CO2	Н						Н			
CO3			Н		Н					
CO4	Н						M			
CO5		Н								

Course Topic(s)

UNIT 1: BASIC STRUCTURE OF COMPUTERS

Functional Units - Basic Operational Concepts - Bus Structures - Software Performance – Memory Locations and Addresses – Memory Operations – Instruction and Instruction Sequencing – Addressing Modes – Assembly Language – Basic I/O Operations – Stacks and Queues.

UNIT 2: ARITHMETIC UNIT

Addition and Subtraction of Signed Numbers – Design of Fast Adders – Multiplication of Positive Numbers - Signed Operand Multiplication and Fast Multiplication – Integer Division – Floating Point Numbers and Operations.

UNIT 3: BASIC PROCESSING UNIT

Fundamental Concepts – Execution of a Complete Instruction – Multiple Bus Organization – Hardwired Control – Micro Programmed Control - Pipelining – Basic Concepts – Data Hazards – Instruction Hazards – Influence on Instruction Sets – Data Path and Control Consideration – Superscalar Operation.

UNIT 4: MEMORY SYSTEM

Basic Concepts – Semiconductor Rams - Roms – Speed - Size and Cost – Cache Memories - Performance Consideration – Virtual Memory - Memory Management Requirements – Secondary Storage.

UNIT 5: I/O ORGANIZATION

Accessing I/O devices – Interrupts – Direct Memory Access – Buses – Interface Circuits – Standard I/O Interfaces (PCI, SCSI, USB).

List of Practical Components

- 1. Implementation of booth algorithm
- 2. Implementation of sequential circuit binary multiplier
- 3. Implementation of bit pair recording
- 4. Implementation of carry save addition
- 5. Implementation of Integer restoring division
- 6. Implementation of Integer Non restoring division
- 7. Implementation of two complement addition
- 8. Implementation of two complement subtraction

TEXT BOOK:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, McGraw-Hill, 5th Edition 2012

REFERENCE BOOKS:

- 1. William Stallings, Computer Organization and Architecture Designing for Performance, PHI pvt Ltd, 4th Edition, 2012.
- 2. David A.Patterson and John L.Hennessy, Computer Organization and Design: The hardware software interface, Morgan Kaufmann, 3rd Edition, , 2007.
- 3. John P.Hayes, Computer Architecture and Organization, McGraw Hill, 3rd Edition, 1998

CSE18R273		OPERATING	SYSTEMS		L	T	P	C
CSE10K2/3					3	0	2	4
Prerequisite	Computer A	rchitecture and	Organization	(CSE18R174)			
Course	Program Cor	·e						
Category								
Course	Integrated Co	ourse						
Type								
Objective(s)	Communication 2. To learn to OS 3. To gain know architecture, agreement product 4. To know	he mechanism nowledge on di Mutual exclu	s involved in stributed oper sion algorithm	memory manating system of ms, deadlock	nagem concep detec	ent in costs that in tion alg	ontemp ncludes orithms	and
Course Outco	management ome(s)							
CO1	Interpret Ope	erating System	Structure, Op	erations, Serv	ices ar	nd Proce	SS	
CO2		ultithreaded Pr	<u> </u>					
CO3		apply process ensure efficie						ing
CO4	Compare, ev optimize wor	aluate, and imprkloads	plement differ	ent memory n	nanage	ement sc	hemes t	О
CO5	Experiment v	with various di	sk manageme	nt schemes				
	COs with ABI				,			
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	
CO1			Н				M	[
CO2	Н							
CO3		Н				Н	L	1
CO4	H	Н				Н		
CO5		Н						
Course Topic	c(s)							

UNIT 1: INTRODUCTION TO OPERATING SYSTEMS

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System

UNIT 2: PROCESS SCHEDULING

Processes: Definition, Process Relationship, Different states of a Process, Process State

transitions, Process Control Block (PCB), Context switching **Thread:** Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

UNIT 3: PROCESS SYNCHRONIZATION AND DEADLOCK

Operations on Processes , Cooperating Processes , Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc.

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

UNIT 4: MEMORY MANAGEMENT

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition—Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

UNIT 5: FILE AND SECONDARY STORAGE MANAGEMENT

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software **Disk Management:** Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

List of Practical Components:

- 1. Windows and UNIX Commands
- 2. Simulation of System calls
- 3. Implementation of CPU Scheduling algorithms
- 4. Simulation of IPC in UNIX
- 5. Implementation of deadlock avoidance algorithms
- 6, Implementation of Page replacement algorithms
- 7. Implementation of memory management functions
- 8. Implementation of disk scheduling algorithms

TEXT BOOKS:

- 1. Abraham Silberschatz, Peter Galvin, Greg Gagne, "Operating System Concepts and Essentials", 9th Edition, Wiley Asia Student Edition.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 5th Edition, , Prentice Hall of India.

REFERNCE BOOKS

1. Charles Crowley, "Operating System: A Design-oriented Approach", 1st Edition by, Irwin

Publishing.

- Gary J. Nutt, "Operating Systems: A Modern Perspective", 2nd Edition, Addison-Wesley.
 Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India

INT18R201		WEB TECH	INOLOGY		L 3	T 1	P 0	C 4		
Prerequisite	Nil				<u> </u>	1	U	4		
Course	Program Cor	e								
Category	8									
Course	Theory	Theory								
Type										
Objective(s)	 To intrapplicat To make deployn To teach applicat To efficient 	roduce the pricions. The students to ment of web sinch methodologions	gies useful fo	languages for	r dev	eloping re of we	simple b serve	er and		
Course Outco	ome(s)									
CO1	implement a	Understand the theoretical and practical concepts (internet basics) to design, implement and maintain a typical web page, to understand different protocols used over the internet, to obtain good knowledge in web programming in JavaScript								
CO2	Develop and JavaScript.	incorporate d	lynamic capab	oilities in Web	page	es using	DHTM	L and		
CO3			ncepts of concepts							
CO4	Understand		cs related to							
CO5	Apply advan side softward database, tes implement in	ced web development that interactive web	lopment progr ts with a data the software	abase for the	purp	oses of	queryir	ng the		
	COs with ABI		T	.			r			
CO\SO	SO1	SO2	SO3	SO4	,	SO5	SC	D6		
CO1	Н	Н			1					
CO2	Н					H				
CO3			Н							
CO4	Н							-I		
CO5		M	M	Н	1	L	l F	I		

UNIT 1: INTRODUCTION

History and basic idea of Internet; Internet services: telnet, e-mail, ftp, WWW- HTML- List, Tables, Images, Forms, Frames, XML- Document type definition, XML Schemas,* Document Object model - Web page design: Designing web pages with HTML5 – New elements added - semantic elements -attributes of form -graphic elements- multimedia elements-APIs-CSS-javascript-Jquery-AJAX

UNIT 2: DYNAMIC HTML

Introduction – Object refers, Dynamic style, Dynamic position, frames, navigator, Event Model – On check – On load – On error – Mouse related – Form process – Event Bubblers – Filters – Transport with the Filter – Creating Images – Adding shadows – Creating Gradients – Creating Motion with Blur – Data Binding – Simple Data Binding – Moving with a record set – Sorting table data – Binding of an Image and table.

UNIT 3: MULTIMEDIA

Audio and video speech synthesis and recognition – Electronic Commerce – E-Business Model – E- Marketing – Online Payments and Security – Web Servers – HTTP request types – System Architecture – Client Side Scripting and Server side Scripting – Accessing Web servers – IIS – Apache web server.

UNIT 4: ASP

ASP – Working of ASP – Objects –File System Objects – Session tracking and cookies – ADO – Access a Database from ASP –Server side Active-X Components – Web Resources – XML – Structure in Data – Name spaces– DTD – Vocabularies – DOM methods

UNIT 5: DATABASE CONNECTIVITY

Database Connectivity - ADO.NET- SqlConnection- SqlCommand- Reading Data with the SqlDataReader - Working with Disconnected Data - Adding Parameters to Commands - Using Stored Procedures

TEXT BOOK

1. Deitel & Deitel, Goldberg, "Internet and World Wide Web 5th Edition – How to Program", Pearson Education Asia, 2012.

- 1. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and JAVA1.2", Prentice Hall of India, QUE, 1999.
- 2. Aferganatel, "Web Programming: Desktop Management", PHI, 2004.
- 3. Rajkamal, "Web Technology", Tata McGraw-Hill, 2001.

INT18R271	D	ATA STRUC	CTURES ANI)	L	T	P	C
1N110N2/1		ALGOR	ITHMS		3	1	2	5
Prerequisite	Programming	g for Problem	Solving (CSE	18R171)				
Course	Program Cor	·e						
Category								
Course	Integrated Co	ourse						
Type								
Objective(s)	 To unde To intro To teacher evaluation To efficient structur 	erstand the dif- oduce the prac- ch methodolo ion of sorting a ciently imple	ic way of solv ferent method tical and form ogies useful and searching ment the solu	s of organizing all aspects of for the impalgorithms.	ng large data str olement	ructures ation ar	nd emp	oirical
Course Outco	ome(s)							
CO1			different data and linked list			arrays,	linked	lists,
CO2		mplement app d space compl	olications using exity	g general tree	e data s	tructures	and an	alyze
CO3			g of various o rtion sort, sele					thms,
CO4		priate inferented conclusion	tial statistical	methods to	analyze	e dataset	s and d	lerive
CO5			various algori	thms design	techniq	ues.		
Mapping of C	COs with ABI				•			
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC)6
CO1			Н					
CO2	Н	Н	Н					
CO3	M		Н					
CO4			Н			M	Н	[
CO5	Н		Н				N	1
Caura Tania	-(-)	·	·	·				

UNIT 1: LINEAR STRUCTURES

Abstract Data Types (ADT)-List ADT- Array based implementation-linked list implementation-Cursor based linked lists-Doubly linked lists- Applications of lists- stack ADT- Queue ADT-Circular queue implementation- Applications of stacks and queue.

UNIT 2: TREE STRUCTURES

Tree ADT- Tree Traversals Binary Tree ADT – Express trees Application of trees- binary search tree ADT- Threaded Binary Trees. AVL Trees – Splay Trees – B –Tree – heaps – Binary heaps – Applications of binary heaps

UNIT 3: HASHING AND SORTING

Hashing- Separate chaining – open addressing – rehashing – extendible hashing – Sorting – Insertion Sort – Selection Sort – Shell Sort – Heap Sort – Merge Sort – Quick Sort

UNIT 4: GRAPHS

Graph Definitions and types, Graph Representation -topological sorting – breadth first traversal – shortest path algorithm – minimum spanning tree – Prims and Kruskal's algorithm – Depth first traversal- biconnectivity- Euler circuits – Applications of graphs

UNIT 5: ALGORITHM DESIGN TECHNIQUES

Introduction – Greedy Method- Divide and Conquer – Dynamic Programming- Back Tracking-Branch and Bound.

PRACTICE COMPONENTS

- 1. Write a program to implement Stack Using Array and Linked list.
- 2. Write a program to implement Queue Using Array and Linked list.
- 3. Write a program to create a singly linked list.
- 4. Develop a date structure for trees, Include addition, deletion, access procedures. Apply this to problems like students list, passengers list, and polynomial representations.
- 5. Write a program to implement Binary Search Tree.
- 6. Write a program to implement Conversion of Infix Expression to Postfix Expression.
- 7. Write a program to implement Conversion of Postfix Expression to Infix Expression.
- 8. Write a program to implement Postfix Expression Evaluation.
- 9. Write an algorithm to convert a tree into a binary tree. Also traverse the tree.
- 10. Write a program to check for balanced parentheses of an expression using array implementation of stack.
- 11. Write a program to check for balanced parentheses of an expression using linked list implementation of stack.
- 12. Write a program to sort a set of elements using bubble sort, insertion sort, shell sort, heap sort, merge sort and quick sort.
- 13. Write a C program to implement the Dijkstra's Algorithm
- 14. Write C program for the implementation of minimum spanning using Kruskal

Write C program for the implementation of minimum spanning using Prims algorithm

TEXT BOOK

1. M.A.Weiss, "Data Structures and Algorithm Analysis in C", 4th Edition, Pearson Education, 2013.

- 1. A.V.Aho, J.E.Hopcroft and J.D.Ullman, "Data Structures and Algorithms", Pearson Education, 2005.
- 2. R.F.Gilberg, B.A.Forouzan, "Data Structures", Second Edition, Thomson India Edition, 2005.

INT18R272	ANALOC	AND DICITA	L COMMUNIC	TATION	L	T	P	C
1N 1 10N2/2	ANALOG	AND DIGITA		ATION	3	0	2	4
Prerequisite	Nil							
Course	Program Co	re						
Category								
Course	Integrated C	ourse						
Type								
Objective(s)	• Prov	ide a detailed i	introduction to th	ie basic pri	nciples	and tec	hniques	sused
	in an	alog and digita	al communication	ıs.				
			og and digital m					
			nitter design, bas			•		
			oding technique	es, noise	analysi	s, and	multipl	exing
		niques.						
			nalytical techniq	jues to ev	aluate	the per	forman	ce of
		nunication sys	tems					
Course Outco								
CO1		_	erating and den			-	e modu	ulated
			ated Signals and l					
CO2			of a digital comm	unication s	system	in terms	of erro	or rate
		Ith efficiency						
CO3			on works in data					
CO4			cepts of Informa	tion and C	coding	Theorie	s and d	lesign
~~~	error correct			11 1				
CO5			data services in o	cellular cor	nmuni	cation		
Mapping of (		1	1					
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	)6
CO1		Н						
CO2	Н							
CO3			Н			H		
CO4	Н	Н	Н			M		
CO5	Н		M				$\mathbf{N}$	1
Course Tonic	(s)·							

### **UNIT 1: ANALOG COMMUNICATION**

**Noise:** Source of Noise - External Noise- Internal Noise- Noise Calculation. Introduction to Communication Systems: Modulation - Types - Need for Modulation. Theory of Amplitude Modulation - Evolution and Description of SSB Techniques - Theory of Frequency and Phase Modulation - Comparison of various Analog Communication System (AM - FM - PM).

## **UNIT 2: DIGITAL COMMUNICATION**

Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Keying (MSK) – Phase Shift Keying (PSK) – BPSK – QPSK – 8 PSK – 16 PSK - Quadrature Amplitude Modulation (QAM) – 8 QAM – 16 QAM – Bandwidth Efficiency– Comparison of various Digital Communication System (ASK – FSK – PSK – QAM).

### **UNIT 3: DATA AND PULSE COMMUNICATION**

**Data Communication:** History of Data Communication - Standards Organizations for Data Communication- Data Communication Circuits - Data Communication Codes - Error Detection

and Correction Techniques - Data communication Hardware - serial and parallel interfaces. Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse code Modulation (PCM) - Comparison of various Pulse Communication System (PAM – PTM – PCM).

#### UNIT 4: SOURCE AND ERROR CONTROL CODING

Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, channel coding theorem, Error Control Coding, linear block codes, cyclic codes, convolution codes, viterbi decoding algorithm.

#### **UNIT 5: MULTI-USER RADIO COMMUNICATION**

Advanced Mobile Phone System (AMPS) - Global System for Mobile Communications (GSM) - Code division multiple access (CDMA) - Cellular Concept and Frequency Reuse - Channel Assignment and Hand off - Overview of Multiple Access Schemes - Satellite Communication - Bluetooth.

#### TEXT BOOK

1. Wayne Tomasi, "Advanced Electronic Communication Systems", 6th Edition, Pearson Education, 2014.

#### **REFERENCES**

- 1. Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2004.
- 2. Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, 2007.
- 3. H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education, 2007.

### LIST OF EXPERIMENTS

- 1. Generation and detection of Amplitude Modulation
- 2. Generation of Frequency modulation and its detection
- 3. Generation and detection of PAM
- 4. Generation and detection of PCM
- 5. Generation and detection of PDM
- 6. Generation of ASK Modulators and demodulators
- 7. Generation of FSK Modulators and demodulators
- 8. Generation of PSK Modulators and demodulators
- 9. Pseudo Random Noise sequence generation with digital IC's.
- 10. Generation of Line Code Encoding
- 11. Characteristics of Mixer.
- 12. Sampling theorem verification
- 13. Delta modulation and demodulation
- 14. QPSK modulation and demodulation
- 15. DPSK modulation and demodulation

INT10D272	ODIEC		N DDOCD AM	MINO	L	T	P	C	
INT18R273	OBJEC.	Γ ORIENTED	PROGRAM	MING	3	0	2	4	
Prerequisite	Programmin	g for Problem	Solving (CSE	18R171)					
Course	Program Co	ore							
Category									
Course	Integrated C	Course							
Type									
Objective(s)	control To intro To intr	ly the object of structures and oduce the class roduce the op- ts in C++	functions. ses, objects, co	onstructors a	nd Desi	ructors.	-		
Course Outco									
CO1		Have a sound understanding of the fundamental concepts of the OOP paradigm							
CO2		program and p							
CO3	Examine and projects.	l implement th	ne inheritance	and virtual fi	unction	concept	s in rea	l time	
CO4	Solve real-li	fe problems us	sing File conce	pts and strea	m clas	ses.			
CO5	Understand	and implemen	nt the templa	te and exce	ption 1	nandling	conce	ots in	
	programs								
Mapping of (	COs with ABl	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	,	SO5	SC	)6	
CO1			Н						
CO2	M	Н					F	I	
CO3						Н			
CO4	Н					M	F	I	
CO5			Н						

### **UNIT 1: INTRODUCTION**

Need of OOP, History, Development, Concepts, and Benefits of OOP. Object-oriented paradigm - elements of object oriented programming - Merits and demerits of OO methodology - Structure of a C++ program - tokens, keywords, identifiers, data types, expressions, control structures, declaration and initialization of variables, operators, expressions and implicit conversions. Functions in C++.

#### UNIT 2: OBJECT ORIENTED PROGRAMMING IN C++

Classes and objects - member functions - constructors and destructors - operator overloading and type conversions – Inheritance - virtual functions and polymorphism.

### **UNIT 3: FILE HANDLING**

Managing console I/O operations: C++ streams, C++ Stream classes, formatted and unformatted I/O operations - File handling in C++: classes for file stream operations, Opening, closing, and updating files, file pointers and their manipulations - Templates and exception handling: class and function templates

### **UNIT 4: JAVA INTRODUCTION**

An overview of Java - data types - variables and arrays, operators, control statements, classes, objects, methods – Inheritance.

#### **UNIT 5: JAVA PROGRAMMING**

Packages and Interfaces- Exception handling - Multithreaded programming - Strings, Input /Output

#### PRACTICAL COMPONENTS

- 1. Programs Using Functions
  - Functions with default arguments
  - Implementation of Call by Value, Call by Address and Call by Reference
- 2. Simple Classes for understanding objects, member functions and
  - Constructors
  - Classes with primitive data members
  - Classes with arrays as data members
  - Classes with pointers as data members String Class
  - Classes with constant data members
  - Classes with static member functions
- 3. Compile time Polymorphism
  - Operator Overloading including Unary and Binary Operators.
  - Function Overloading
- 4. Runtime Polymorphism
  - Inheritance
  - Virtual functions
  - Virtual Base Classes
  - Templates
- 5. File Handling
  - Sequential access
  - Random access
- 6. Simple Java applications
  - for understanding reference to an instance of a class (object), methods
  - Handling Strings in Java
- 7. Simple Package creation.
  - Developing user defined packages in Java
- 8. Interfaces
  - Developing user-defined interfaces and implementation
  - Use of predefined interfaces
- 9. Threading
  - Creation of thread in Java applications
  - Multithreading
- 10. Exception Handling Mechanism in Java
  - Handling pre-defined exceptions
  - Handling user-defined exceptions

#### **TEXT BOOKS**

- 1. Robert Lafore,"Object Oriented Programming in C++" Sams Publishing copyright 2002, fourth edition.
- 2. Venugopal, R., Rajkumar Buyya, Ravishankar, Mastering C++, TMH, 2003

- 3. Herbert Schildt, The Java 2: Complete Reference, 7th edition, TMH, 2006 **REFERENCE** 
  - 1. Ira Pohl, Object oriented programming using C++, Pearson Education Asia, 2003
  - 2. Herbert Schildt, The Java 2: Complete Reference, Fourth edition, TMH, 2002.
  - 3. Rajaraman, Object Oriented Programming and C++, New Age International, 2007.

INT18R274	PRIN	CIPLES OF I	DIGITAL SIG	GNAL	L	T	P	C
1N110N2/4		PROCE	SSING		3	0	2	4
Prerequisite	•	Signals and S	ystems (ECE1	8R220)				
Course	Program Cor	e						
Category								
Course	Integrated Co	ourse						
Type								
Objective(s)		sic concepts an	_	_			_	
		, systems, time						ciated
		e mathematical	, ,				-	
		vide a thoroug						
		entation, analy	ysis and comp	arison of di	gital fil	ters for p	process	ing of
		time signals.						
		y various sam					lters an	d will
		derstand Basic						
		ost important						esign,
	•	m-domain pro	cessing and in	nportance of	Signal	Process	ors.	
Course Outco								
CO1		process signal						
CO2		als using fast			• •			
CO3		ilters to suit sp						
CO4		Filters to suit s	•					
CO5		develop applic	ations of signs	al processing	g algori	thms to	suite sp	ecific
3.5	needs	TT 00						
Mapping of C			902	201		7.0.5		
CO\SO	SO1	SO2	SO3	SO4	,	SO5	SC	D6
CO1	Н		Н					
CO2	Н	***	Н					
CO3	**	Н	Н					
CO4	Н	Н	M					
CO5		Н	M				N	Л

### **UNIT 1: SIGNALS AND SYSTEMS**

Basic elements of digital signal Processing – Concept of frequency in continuous time and discrete time signals – Sampling theorem – Discrete time signals, Discrete time systems – Analysis of Linear time invariant systems – Z transform –Convolution and correlation - MATLAB programs for signals and systems.

## **UNIT 2: FAST FOURIER TRANSFORMS**

Introduction to DFT – Efficient computation of DFT Properties of DFT – FFT algorithms – Radix-2 and Radix-4 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –Use of FFT algorithms in Linear Filtering.

## **UNIT 3: IIR FILTER DESIGN**

Structure of IIR – Analog filter design - Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – Design of IIR filter in the Frequency domain.

### **UNIT 4: FIR FILTER DESIGN**

Structure for FIR systems - Symmetric & Anti-symmetric FIR filters - Linear phase FIR filter - Filter design using windowing techniques (Rectangular Window, Kaiser Window), Frequency sampling techniques - Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

#### UNIT 5: APPLICATION OF DSP

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor –Application of DSP: Model of speech wave form – Vocoder – Musical sound processing, Digital music synthesis.

#### **TEXT BOOK**

1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.

#### REFERENCES

- 1. Alan V Oppenheim, Ronald W Schafer and John R Buck, "Discrete Time Signal Processing", PHI/Pearson Education, 2010.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 3. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.

### PRACTICAL EXPERIMENTS

- 1. Generation of input Signals.
- 2. Analysis of linear system [with convolution and de-convolution operation]
- 3. FIR filters design by Rectangular window using MATLAB Programming.
- 4. FIR filters design by Kaiser Window using MATLAB Programming.
- 5. IIR Butterworth filters design using MATLAB Programming.
- 6. IIR Chebyshev filters design using MATLAB Programming.
- 7. Implementation of FFT
- 8. Implementation of Interpolation and decimation
- 9. Estimation of power spectral density using MATLAB Programming
- 10. Spectral analysis using MATLAB Programming
- 11. Verification of linear phase characteristics of FIR filters.

	MICROC		S AND EMB	EDDED	L	T	P	C
INT18R251		SYST	EMS		3	0	1	3.5
Prerequisite	Nil							
Course	Program Cor	e						
Category								
Course	Theory with	Practice						
Type								
Objective(s)			h knowledge o	of the archite	cture a	nd progr	rammin	g of 8
		it microcontro						
		udy the interfa	ice of various	peripheral de	evices			
Course Outco								
CO1	Understand b	pasic structure	microcontroll	er.				
CO2	Ability to pro	ogram microco	ontroller					
CO3	Understand b	oasic structure	embedded sys	stems				
CO4	Understand f	undamentals o	of real time op	erating syste	m			
CO5	Create some	embedded pro	oducts					
Mapping of C	COs with ABI	ET SOs						
CO\SO	SO1	SO2	SO3	SO4	,	SO5	SO	D6
CO1			Н					
CO2	Н	M					N	M
CO3	Н		Н					
CO4	Н		Н					
CO5				Н		Н	I	Н

### **UNIT 1: MICROCONTROLLER ARCHITECTURE**

Introduction to Microprocessor – Architecture, Memory Organization, Pin configuration. Introduction to 8051 Microcontroller, Architecture, Pin configuration, Memory organization, Input /Output Ports, Counter and Timers, Serial communication, Interrupts.

### **UNIT 2: ASSEMBLY LANGUAGE PROGRAMMING OF 8051**

Instruction set, Addressing modes, Development tools, Assembler Directives, Programming based on Arithmetic & Logical operations, I/O parallel and serial ports, Timers & Counters, and ISR.

## **UNIT 3: INTRODUCTION TO EMBEDDED SYSTEMS**

Overview of Embedded System Architecture, Application areas, Categories of embedded systems, specialties of embedded systems. Recent trends in embedded systems. Brief introduction to embedded microcontroller cores CISC, RISC, ARM, DSP and SoC.

## UNIT 4: EMBEDDED / REAL TIME OPERATING SYSTEM

Architecture of kernel, Task and Task scheduler, Interrupt service routines, Semaphores, Mutex, Mailboxes, Message queues, Event registers, Pipes, Signals, Timers, Memory management, Priority inversion problem. Off-the-Shelf Operating Systems, Embedded Operating Systems, Real Time Operating System (RTOS) and Handheld Operating Systems.

### **UNIT 5: EMBEDDED SYSTEM - DESIGN CASE STUDIES**

Digital clock, Battery operated smart card reader, Automated meter reading system, Digital

#### camera.

#### **TEXT BOOKS**

- 1. M. A. Mazidi, J. G. Mazidi, R. D, "The 8051 microcontroller & Embedded systems", McKinlay, Pearson Edition. 2010
- 2. Kenneth J. Ayala, Dhananjay V, Gadre "The 8051 microcontroller & Embedded systems", Cengage Learning, 2010
- 3. Dr. K. V. K. K. Prasad, "Embedded / real time systems: concepts, design & programming", Black Book, Dreamtech press, Reprint edition 2013

#### **REFERENCES**

- 1. Shibu K. V "Introduction to embedded systems", McGraw Hill, 2011
- 2. Ray A.K, and Burchandi K.M, "Intel Microprocessors Architecture Programming and Interfacing", McGraw Hill International Edition, 2004.
- 3. Rafi Quazzaman M., "Microprocessors Theory and Applications: Intel and Motorola", Prentice Hall of India, Pvt. Ltd., New Delhi, 3rd edition, 2008.
- 4. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012.

#### PRACTICAL EXPERIMENTS

- 1. Arithmetic Operations with 8051
- 2. Finding sum of elements in an array
- 3. Number Conversions
- 4. To find the largest number in a data array
- 5. To write a program to initiate 8251 and to check the transmission and reception of character.
- 6. To interface 8253 programmable interval timer.
- 7. Stepper Motor Interfacing with 8051
- 8. Data transfer programs using 8051
- 9. Timers and Interrupts
- 10. Serial Communication
- 11. Interfacing with Traffic Generator, DAC, ADC
- 12. Basic and Interfacing Programs Using Embedded C
- 13. Real time system programs (Embedded C)
- 14. KEIL software example programs
- 15. ARM/Atom based Application Development:
  - i. Programs to practice data processing instructions.
  - ii. Interfacing programs
  - iii. Program that uses combination of C and ARM/Atom assembly code.

INT18R311	ΔRT	ΓIFICIAL IN	TELLICENO	TF.	L	T	P	C	
11(1101(311	AKI		IELLIGEN	<b>ٿ</b> ا.	3	0	0	3	
Prerequisite	Nil								
Course	Program Cor	e							
Category	_								
Course	Theory								
Type									
Objective(s)	• To Und	erstand differe	ent planning p	roblems					
	• To have	e the basic kr	nowledge how	to design a	nd im	plement	AI pla	nning	
	systems		_	_		-	-		
	• To kno	w how to us	se AI plannir	g technology	y for	projects	in dif	ferent	
	applicat	ion domains	-						
	Ability	to make use o	f AI planning	literature					
Course Outco	ome(s)								
CO1	Learn the b	Learn the basics of the theory and practice of Artificial Intelligence as a							
	discipline ab	out intelligent	agents capabl	e of deciding	what 1	to do, an	d do it		
CO2	Understand t	he strengths a	nd limitations	of various sta	ate-sp	ace searc	h algor	rithms	
		ne appropriate							
CO3		edge represen				cific pro	blem so	olving	
		ensure ethical							
CO4		le software to	o experiment	with various	AI c	oncepts	and ar	nalyze	
	results								
CO5		arning and res		be able to t	ackle	a topic o	of intere	est on	
		or as part of a	team						
Mapping of C							1		
CO\SO	SO1	SO2	SO3	SO4	,	SO5	SC	06	
CO1				M					
CO2				Н					
CO3	Н		M	Н			I	I	
CO4		Н		M					
CO5	Н			M		Н			

#### **UNIT 1: INTRODUCTION**

Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information.

### **UNIT 2: SEARCHING TECHNIQUES**

Informed search and exploration – Informed search strategies – heuristic function – local search algorithms and optimistic problems – local search in continuous spaces – online search agents and unknown environments - Constraint satisfaction problems (CSP) – Backtracking search and Local search for CSP – Structure of problems - Adversarial Search – Games – Optimal decisions in games – Alpha – Beta Pruning.

## **UNIT 3: KNOWLEDGE REPRESENTATION**

First order logic - representation revisited - Syntax and semantics for first order logic -

Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution

### **UNIT 4: LEARNING**

Learning from observations - forms of learning - Inductive learning - Learning decision trees - Ensemble learning - Knowledge in learning - Logical formulation of learning - Explanation based learning - Learning using relevant information - Inductive logic programming - Statistical learning methods - Learning with complete data - Learning with hidden variable - EM algorithm-Instance based learning - Neural networks

### **UNIT 5: APPLICATIONS**

Communication – Communication as action – Formal grammar for a fragment of English – Syntactic analysis – Augmented grammars – Semantic interpretation – Ambiguity and disambiguation – Discourse understanding – Grammar induction - Probabilistic language processing - Probabilistic language models – Information retrieval – Information Extraction – Machine translation.

#### TEXT BOOK

1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 2nd Edition, Pearson Education / Prentice Hall of India, 2004.

- 1. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", 2nd Edition, Tata McGraw-Hill, 2003.
- 3. George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Problem Solving", Pearson Education / PHI, 2002.

CSE18R371	C	OMPUTER N	NETWORKS		L	T	P	C
CSEIONS/I					3	1	2	5
Prerequisite	Operating Sy	stems (CSE18	3R273)					
Course	Program Cor	·e						
Category								
Course	Integrated Co	ourse						
Type								
Objective(s)	1. To provi	de students w	ith an overvie	ew of the co	ncepts	and fun	dament	als of
	data co	mmunication a	and computer	networks.				
		oduce students						
		ard OSI refere						
	suite an	d network to	ools and pro	ogramming	using	various	netwo	orking
	technolog	gies.						
Course Outco								
CO1		asics of data c						S
CO2	Identify the t	echnologies for	or error free tra	ansmission c	of data	over inte	rnet	
CO3	11 0	is routing prot	ocols to select	optimal pat	h and r	elate add	ressing	
		etwork Layer						
CO4	Implement d	ifferent transp	ort and applic	ation layer p	protoco	ls which	enable	s data
		on over intern						
CO5	Configure in	termediate dev	vices used in n	etworks				
Mapping of (	COs with ABI	ET SOs						
CO\SO	SO1	SO2	SO3	SO4		SO5	SC	06
CO1	Н		Н					
CO2			Н					
CO3	M	Н					F	1
CO4	M		Н	Н				
CO5			Н	M				

## UNIT 1: INTRODUCTION TO NETWORKS AND PHYSICAL LAYER

Introduction: Networks, Uses of Networks, Network Topology, Transmission Modes - Network Hardware - Transmission technology - Categories of Networks - Network Software - Protocol Hierarchy - Design issues for the layers - Services - Reference Model: TCP/IP and OSI - Internet: Architecture of Internet - Physical Layer: Need and Issues, Data Communication, Guided transmission media, Wireless Transmission, Communication Satellites, Multiplexing and Switching.

### UNIT 2 : DATA LINK LAYER

DLL: Need and Issues - Error Detection and Correction - Protocol Verification and Data Link Layer protocols - MAC Sub layer - Channel Allocation Problem - Multiple Access Protocols - Ethernet - Wireless LANs and VLAN - Data Link Layer Switching - Connectivity Devices - Configuration of Switches.

#### UNIT 3: NETWORK LAYER

Network Layer - Need and Issues - Routing algorithms - Congestion Control Algorithms - QOS - Network Layer in Internet - Network Addressing - Configuration of Router - ARP and RARP.

#### UNIT 4: TRANSPORT LAYER

Transport Layer - Need and Issues - Transport service - Elements of Transport Protocols -

Simple Transport Protocol - TCP and UDP.

### UNIT 5: APPLICATION LAYER

Application Layer - Need and Issues - DNS - Electronic Mail - FTP - HTTP - WWW - RPC - RMI.

## **List of Experiments:**

- 1. Study of Socket Programming
- 2. Socket Programming for Client-Server Communication
- 3. Configuration of Switch
- 4. Implementation of ARP
- 5. Implementation of RARP
- 6. Configuration of Router
- 7. Enable Client Server Communication using TCP Protocol
- 8. Implementation of Client Server communication using UDP Protocol
- 9. Implementation of FTP client
- 10. Download a File from HTTP Server
- 11. Implementation of Port Scanning

### **TEXT BOOKS:**

1. Andrew S Tenenbaum, David J. Wetherall, "Computer Networks", Fifth Edition Pearson Education, 2011

### **REFERENCE BOOKS:**

- 1. Behrouz A. Forouzan, "Data Communications and Networking", Fiftth Edition, McGraw-Hill, 2012
- **2.** Larry Peterson, Bruce Davie, Morgan Kaufmann, "Computer Networks A Systems Approach", Fifth Edition, 2011
- 3. Todd Lammle, "CCNA Cisco Certified Network Associate Study Guide", 7th Edition, 2011
- **4.** B. S. Manoj, C. Siva Ram Murthy, "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall, 2004

Prerequisite       Nil         Course       Program Core         Category       Integrated Course         Objective(s)       To learn the principles of systematically designing and using large scale day Management systems for various applications         Course Outcome(s)       Understand the features of database management systems and create concermodels of a database using ER modeling         CO2       Create and populate a RDBMS with keys, constraints, queries using SQL         CO3       Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
Course Category         Program Core           Course Type         Integrated Course           Objective(s)         To learn the principles of systematically designing and using large scale data Management systems for various applications           Course Outcome(s)         CO1         Understand the features of database management systems and create concept models of a database using ER modeling           CO2         Create and populate a RDBMS with keys, constraints, queries using SQL           CO3         Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
Category  Course Type Integrated Course  Objective(s) To learn the principles of systematically designing and using large scale day Management systems for various applications  Course Outcome(s)  CO1 Understand the features of database management systems and create concept models of a database using ER modeling  CO2 Create and populate a RDBMS with keys, constraints, queries using SQL  CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
Course Type         Integrated Course           Objective(s)         To learn the principles of systematically designing and using large scale data Management systems for various applications           Course Outcome(s)         CO1         Understand the features of database management systems and create concept models of a database using ER modeling           CO2         Create and populate a RDBMS with keys, constraints, queries using SQL           CO3         Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
To learn the principles of systematically designing and using large scale data     Management systems for various applications							
Management systems for various applications  Course Outcome(s)  CO1 Understand the features of database management systems and create concept models of a database using ER modeling  CO2 Create and populate a RDBMS with keys, constraints, queries using SQL  CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
Course Outcome(s)  CO1 Understand the features of database management systems and create concept models of a database using ER modeling  CO2 Create and populate a RDBMS with keys, constraints, queries using SQL  CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database	eptual						
CO1 Understand the features of database management systems and create concept models of a database using ER modeling CO2 Create and populate a RDBMS with keys, constraints, queries using SQL CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database	eptual						
models of a database using ER modeling  CO2 Create and populate a RDBMS with keys, constraints, queries using SQL  CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database	eptual						
models of a database using ER modeling  CO2 Create and populate a RDBMS with keys, constraints, queries using SQL  CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
CO2 Create and populate a RDBMS with keys, constraints, queries using SQL CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database	=						
CO3 Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database							
normalization to design an optimal database							
5 1							
1 COA 1 Analyses vanious data atomaga and naturated afriction from database and	1 41						
CO4 Analyze various data storage and retrieval of information from database and	ia ine						
identify issues in query processing							
CO5 Apply secure database techniques and manage advanced data models							
, , ,	anizational						
requirements.							
Mapping of COs with ABET SOs							
CO\SO         SO1         SO2         SO3         SO4         SO5	SO6						
CO1 H							
CO2 H							
CO3 H H	M						
CO4 M H M H	TAT						
CO5 M H M	1V1						

#### **UNIT 1: INTRODUCTION**

Introduction to File Systems - Introduction to Database Systems - Database System Structure - Views of Data - Data Models - Types of Data Models - Database Languages - Database Users and Administrator— ER Model - E-R Diagrams.

#### UNIT 2: RELATIONAL MODEL

Relational Model – Catalog – Types – Keys - Relational Algebra- Domain - Tuple Relational Calculus - SQL – Data Definition - Queries In SQL – Updates - Views – Integrity and Security – Sub Queries - Correlated Sub Queries - Relational Database Design – Functional Dependences And Normalization For Relational Databases (up to BCNF).

### **UNIT 3: DATA STORAGE AND QUERY PROCESSING**

Record storage and Primary file organization- Secondary storage Devices- Operations on Files - Heap File - Sorted Files- Hashing Techniques – Index Structure for files – Different types of Indexes – B-Tree - B+Tree – Database Tuning - Ouery Processing.

#### **UNIT 4: TRANSACTION MANAGEMENT**

Transaction Concepts – Transaction Recovery – ACID Properties –Need for Concurrency Control - Schedule and Recoverability- Serializability and Schedules – Concurrency Control – Types of Locks- Two Phases locking- Deadlock- Time Stamp based Concurrency Control – Recovery Techniques – Concepts - Immediate Update - Deferred Update - Shadow Paging.

### UNIT 5: DATABASE SECURITY AND ADVANCED DATABASES

Data Classification – Threats and Risks – Database Access Control and Privilege Management – Cryptographic Methods for Data Protection – Security Administration and Policy Enforcement – Statistical Databases and Privacy Preservation – Distributed Databases: Architecture and Secure Transaction Processing – Object-Oriented and XML Databases – Web Data Management: Crawling, Indexing, and Relevance Ranking – Approaches for Developing and Managing Secure and Integrated Database Systems.

### PRACTICAL COMPONENTS

- 1. Implementation of DDL commands in RDBMS.
- 2. Implementation of DML and DCL commands in RDBMS.
- 3. Implementation of Date and Built in Functions of SQL.
- 4. Implementation of Simple Programs.
- 5. Implementation of High-level language extension with Cursors.
- 6. Implementation of High level language extension with Triggers
- 7. Implementation of stored Procedures and Functions.
- 8. Embedded SQL.
- 9. Database design using E-R model and Normalization.
- 10. Database Connectivity using ADO
- 11. Database Connectivity using ODBC
- 12. Database Connectivity using JDBC

### **TEXT BOOK**

1. Abraham Silberschatz, Henry F., Korth and Sudarshan S, "Database System Concepts", McGraw-Hill, Sixth Edition, 2010.

- 1. Ramez Elmasri and Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, Fifth Edition 2008.
- 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 2003.
- **3.** Hector Garcia–Molina, Jeffrey D.Ullman and Jennifer Widom, "Database System Implementation", Pearson Education, Second Edition, 2009

INT18R359	C.	OETWADE E	NCINEEDN	<u> </u>	L	T	P	C
	50	OF I WARE E	CNGINEERN	<del>Մ</del>	3	0	1	3.5
Prerequisite	Nil							
Course	Program Cor	re						
Category								
Course	Theory with	Practice						
Type	-							
Objective(s)	• This co	urse helps to u	understand the	ories, method	s, and	technolo	ogies ap	plied
	for prof	essional softw	are developm	ent.				
	• To def	ine software	engineering	and explain its	s impo	rtance		
	To dis	cuss the conce	pts of softwar	e products and	l softw	are proc	esses	
Course Outco								
CO1			propriate proc				t	
CO2	Understand t	he principles a	at various phas	ses of software	e devel	opment		
CO3			roject estimat				e work	to be
	· · · · · · · · · · · · · · · · · · ·		nd the schedul					
CO4			nto design, an					
		•	roblem, all us	ing an approp	oriate s	software	engine	ering
	methodology							
CO5			ct, identify ch			ppropria	ite solu	tions,
			es to validate t	nose solutions				
	COs with ABI		T	1				
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	16
CO1	Н	Н						
CO2	Н		H					
CO3								
CO4				M		H	Н	[
CO5	Н		Н	Н				

### **UNIT 1: SOFTWARE ENGINEERING CONCEPTS**

Software and Software Engineering - Project Management Concepts - Software Engineering Paradigms - Generic Process Models, Assessment and Improvement - Water Fall Life Cycle Model - Prototype Model - RAD Model - Spiral Model - Incremental Model - Requirements Engineering

### **UNIT 2: MANAGING SOFTWARE PROJECTS**

Metrics: Metrics in Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics in a Software Engineering Process - Estimation , Scheduling - Risk Management - Review Techniques - Software Quality Assurance

### **UNIT 3: DESIGN CONCEPTS**

Design Process - Design Principles - Design Concepts - Software Architecture - Architectural Style, Design and Mapping - User Interface Design

### **UNIT 4: SOFTWARE TESTING AND DEBUGGING**

Testing Fundamentals and Strategies - White-box and Black-box testing - Basis Path

Testing - Data Flow Testing - Testing for Special Environments - Unit Testing, - Integration Testing - Validation Testing - System Testing - Debugging - Software Maintenance - Software

Configuration Management

### **UNIT 5: ADVANCED TOPICS**

Computer Aided Software Engineering - Clean room software engineering - Reverse Engineering

### PRACTICAL COMPONENTS

- 1. Introduction to UML (Unified Modeling Language)
  - b) Visualizing
  - c) Specifying
  - d) Constructing
  - e) Documenting
- 2. Program Analysis and Project Planning: Study of Problem definition Identification of project Scope, Objectives, Infrastructure
- 3. Preparation of System Requirement Specification (SRS) and related analysis documents as Per the guidelines in ANSI/IEEE Std 830-1984.
- 4. Create UML Diagrams (Use diagrams, Activity diagrams, Class diagrams, Sequence diagrams)
- 5. Software Development (Implementation)
- 6. Software Testing and Prepare test plan,
- 7. Execution of Test cases.
- 8. Debugging and demonstration.

#### **TEXTBOOK**

**1.** Roger S. Pressman, "Software Engineering: A Practitioner's Approach", seventh Edition, McGraw Hill, 2014.

#### REFERENCE BOOKS

- 1. Steve McConnell, "Code Complete", Second Edition, Microsoft Press. 2004
- 2. Ian Somerville, "Software Engineering", Addison-Wesley, Ninth edition, 2011.
- 3. Richard E. Fairley, "Software Engineering Concepts", Second Edition McGraw-Hill, 1985.

#### PROFESSIONAL ELECTIVES

#### **COMPUTER PROGRAMMING**

INT10D251		CUCTEM CO	NETWADE		L	T	P	C
INT18R351		SYSTEM SO	JF I WARE		3	0	1	3.5
Prerequisite	Computer A	rchitecture an	d Organizatio	n (CSE18R1	74)			
Course	Professional	Elective						
Category								
Course Type	Theory with	Practice						
Objective(s)	• To in	ntroduce the	essential conce	epts of Syste	m Progr	ramming	<b>5</b>	
	<ul> <li>To ki</li> </ul>	now about the	functions of	loaders, link	ers and	macro p	rocesso	ors.
Course Outcon	me(s)					_		
CO1	Know the ba	ckground Kn	owledge of Sy	stem Softwa	are			
CO2	Design a sim	ple Assemble	er					
CO3	Identify the	use of Linkers	s and Loaders					
CO4	Understand l	Machine Inde	pendent Macr	o Processor				
CO5	Formulate va	arious Compi	lers and Inter	oreters				
Mapping of Co	Os with ABE	T SOs						
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	D6
CO1			Н					
CO2		Н						
CO3			Н				•	
CO4			Н					
CO5	M		Н					

### Course Topic(s)

#### **UNIT 1: BACKGROUND**

Introduction – System Software and Machine Architecture – The Simplified Instructional Computer (SIC) – Machine architecture - Data and instruction formats - addressing modes - instruction sets - I/O and programming. Practical: Basic system programming

### **UNIT 2: ASSEMBLERS**

Basic Assembler Functions – Machine Dependent Assembler Features – Machine Independent Assembler Features – Program relocation - Machine independent assembler features - Literals – Symbol-defining statements – Expressions - One pass assemblers and Multi pass assemblers - Implementation example - MASM assembler. Practical: Assembly language programming

### **UNIT 3: LOADERS AND LINKERS**

Basic loader functions - Design of an Absolute Loader - A Simple Bootstrap Loader - Machine dependent loader features - Relocation - Program Linking - Algorithm and Data Structures for Linking Loader - Machine-independent loader features - Automatic Library Search - Loader Options - Loader design options - Linkage Editors - Dynamic Linking - Bootstrap Loaders - Implementation example - MSDOS linker. Practical: Dynamic

## link programming

### **UNIT 4: MACRO PROCESSORS**

Basic macro processor functions - Macro Definition and Expansion - Macro Processor Algorithm and data structures - Machine-independent macro processor features - Concatenation of Macro Parameters - Generation of Unique Labels - Conditional Macro Expansion - Keyword Macro Parameters-Macro within Macro-Implementation example - MASM Macro Processor - ANSI C Macro language. Practical: Macro implementation

#### **UNIT 5: SYSTEM SOFTWARE TOOLS**

Text editors - Overview of the Editing Process - User Interface – Editor Structure. -Interactive debugging systems - Debugging functions and capabilities – Relationship with other parts of the system – User-Interface Criteria. Practical: User interface design

## **TEXT BOOK**

1. Leland L. Beck, "System Software – An Introduction to Systems Programming", 3rd Edition, Pearson Education Asia, 2006.

- 1. J. Nithyashri, "System Software", Tata McGraw Hill, 2nd Edition, 2010.
- 2. A.A. Puntambekar, I. A. Dhotre, "System Programming", McGraw Hill, 2008.

INT18R301	OBJ	ECT ORIEN	ΓED ANALY	SIS	L	T	P	C			
1N 1 10K3U1		AND DI	ESIGN		3	0	0	3			
Prerequisite	Nil										
Course	Professional	Professional Elective									
Category											
Course	Theory	Theory									
Type											
Objective(s)	• To kr	now about OO	AD method								
	<ul> <li>To kr</li> </ul>	now about soft	tware design s	teps							
Course Outco	ome(s)										
CO1	Pointing out	the importan	ce and function	on of each U	JML r	nodel th	rougho	ut the			
	process of o	process of object-oriented analysis and design and explaining the notation of									
	various elen	various elements in these models									
CO2	Highlighting	the important	ce of object-or	iented analys	is and	design p	atterns				
CO3	Providing st	udents with t	the necessary	knowledge	and sk	kills in ι	ising o	bject-			
	oriented CAS	SE tools									
CO4	Applying De	sign Patterns	in software de	velopment pr	ocess						
CO5	Familiar with	Familiar with various coding and testing process									
Mapping of C	Os with ABI	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	6	SO5	SC	06			
CO1	M		Н								
CO2		Н	Н								
CO3	Н										
CO4	Н		Н		M						
CO5			Н				Н				

#### **UNIT 1: UML DIAGRAMS**

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams

#### **UNIT 2: DESIGN PATTERNS**

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller - Design Patterns – creational - factory method - structural – Bridge – Adapter -behavioral – Strategy – observer

### **UNIT 3: CASE STUDY**

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and Composition

#### **UNIT 4: APPLYING DESIGN PATTERNS**

System sequence diagrams - Relationship between sequence diagrams and Logical architecture and UML package diagram - Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns

## **UNIT 5: CODING AND TESTING**

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration

Testing – GUI Testing – OO System Testing

#### **TEXT BOOK**

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", fourth Edition, Pearson Education, 2013.

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley, 1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", Third edition, Addison Wesley, 2003.

INT18R352	DESIGN AND ANALYSIS OF ALGORITHM				L	T	P	C			
11V110K332					3	0	1	3.5			
Prerequisite	Data Structures and Algorithms (INT18R271)										
Course	Professional Elective										
Category											
Course	Theory with	Theory with Practice									
Type	-										
Objective(s)	Analyz	Analyze the asymptotic performance of algorithms.									
	Write ri	igorous correc	tness proofs fo	or algorithms	S.						
	• Demon	strate a familia	arity with majo	or algorithms	s and da	ata struct	ures.				
	Apply i	mportant algo	rithmic design	paradigms a	and me	thods of	analysi	is.			
		size efficient a	_				•				
Course Outco			<u> </u>			<u> </u>					
CO1		basic concept	s of algorith	ms and a	nalyze	the per	formar	nce of			
	algorithms	•	C		•	•					
CO2	Identify varie	ous algorithm	design technic	ques for deve	loping	algorith	ms				
CO3	Analysis var	ious searching	g, sorting and g	graph travers	al algo	rithms					
CO4		NP completene					blems				
CO5	Formulate th	e advanced to	pics on algori	thms		_					
Mapping of (	COs with ABI	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	;	SO5	S	06			
CO1	Н		Н								
CO2		Н	Н								
CO3	Н				Н						
CO4			Н								
CO5			Н								
C T :	-(-)	•	•								

#### UNIT 1: BASIC CONCEPTS OF ALGORITHMS

Introduction – Notion of Algorithm – Fundamentals of Algorithmic Solving – Important Problem types – Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework – Asymptotic Notations and Basic Efficiency Classes.

## UNIT 2: MATHEMATICAL ASPECTS AND ANALYSIS OF ALGORITHMS

Mathematical Analysis of Non-recursive Algorithm – Mathematical Analysis of Recursive Algorithm – Example: Fibonacci Numbers – Empirical Analysis of Algorithms – Algorithm Visualization. Practical: Mathematical Analysis of Recursive Algorithm

## UNIT 3: ANALYSIS OF SORTING AND SEARCHING ALGORITHMS

Brute Force – Selection Sort and Bubble Sort – Sequential Search and Brute-force string matching – Divide and conquer – Merge sort – Quick Sort – Binary Search – Binary tree-Traversal and Related Properties – Decrease and Conquer – Insertion Sort – Depth first Search and Breadth First Search. Practical: Sorting

### **UNIT 4: ALGORITHMIC TECHNIQUES**

Transform and conquer – Presorting – Balanced Search trees – AVL Trees – Heaps and Heap sort – Dynamic Programming – Warshall's and Floyd's Algorithm – Optimal Binary Search trees – Knapsack problem and memory functions - Greedy Techniques – Prim's Algorithm – Kruskal's Algorithm – Dijkstra's Algorithm – Huffman trees. Practical: Trees

### **UNIT 5: ALGORITHM DESIGN METHODS**

Backtracking – n-Queen's Problem – Hamiltonian Circuit problem – Subset-Sum problem – Branch and bound – Assignment problem – Knapsack problem – Traveling salesman problem – NP and NP-Complete problems – Approximation Algorithms for NP – Hard Problems. Practical: Knapsack problem

### TEXT BOOK

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithm", 3rd Edition, Pearson Education India, 2013.
- 2. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012...

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI Pvt. Ltd., 2001.
- 2. Sara Baase and Allen Van Gelder, "Computer Algorithms Introduction to Design and Analysis", 2nd Impression, Pearson Education India, 2008.
- 3. A.V.Aho, J.E. Hopcroft and J.D.Ullman, "The Design and Analysis of Computer Algorithms", Pearson Education Asia, 2003.

INT18R360	DATA ANALYSIS USING PYTHON		L	T	P	C			
1N118K300	DATA	ANAL I SIS	USING PYT	HUN	3	0	1	3.5	
Prerequisite	Programming for Problem Solving (CSE18R171)								
Course	Professional Elective								
Category									
Course	Theory with Practice								
Type									
Objective(s)	The student wi	The student will be able to learn							
	• Fundar	mentals and I	Data structures	of pythons p	rogram	ming la	nguage	<b>:</b> .	
	• Object	oriented con	cepts in pytho	n programmi	ng lang	uage.			
	Retriev	ing, processi	ing, storing an	d visualizatio	n of da	ta using	pythor	1.	
Course Outco	ome(s)								
CO1	Explore Pytho	on language	fundamentals	, including b	asic sy	ntax, va	ariables	s, and	
	types	types							
CO2	Use functions,	create and n	nanipulate reg	ular Python l	ists by	using da	ata stru	ctures	
	concepts	concepts							
CO3	Understand the				on				
CO4	Effectively use								
CO5	Create and cus	-			ge your	scripts	with co	ntrol	
	flow, and get to		Pandas Data Fi	rame					
	COs with ABET	ΓSOs							
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	)6	
CO1		M	Н						
CO2	M		Н						
CO3			Н						
CO4	Н		Н						
CO5	H								

## **UNIT I: INTRODUCTION TO PYTHON**

Brief history of python, Data types -Built-in, Sequence, Sets, Strings, Literals, constants, keywords, variables, naming convention. Operators –Types, Precedence & Associativity, Input, Output, file handling, Control Statements.

#### UNIT II: FUNCTIONS AND DATA STRUCTURES IN PYTHON

Functions—basics of functions, functions as objects, recursive functions, List—methods to process lists, Shallow & Deep copy, Nested lists, lists as matrices, lists as stacks, Queues, -De-queues, Tuples -basic operations on tuples, nested tuples, Dictionaries—operations on dictionary, ordered dictionary, iteration on dictionary, conversion of lists & strings into dictionary, Sets & frozen sets, looping techniques on lists & dictionaries, Lamda, filter, reduce, map, list comprehension, iterators and generators.

#### **UNIT III: OBJECTS IN PYTHON**

Class and instance attributes, inheritance, multiple inheritance, methos resolution order, magic methods and operator overloading, meta classes, abstract and inner classes, exception handling, modular programs and packages.

### **UNIT IV: NUMERICAL ANALYSIS IN PYTHON**

Introduction to NumPy, NumPy array object, Creating a multidimensional array, NumPy

numerical types -Data type objects, Character codes, dtype constructors. dtype attributes. One-dimensional slicing and indexing. Manipulating array shapes --Stacking arrays, Splitting NumPy arrays, NumPy array attributes, Converting arrays, Creating array views and copies. Indexing with a list of locations. Indexing NumPy arrays with Booleans. Broadcasting NumPy arrays.

### UNIT V: DATA MANIPULATION AND VISUALIZATION IN PYTHON

Data frames in panda, Creating dataframes from .csv and excel files, Lists of tuples, Dataframes aggregation and concatenation, plotting data using matplotlib & panda

### **TEXT BOOK(S):**

- 1. Ivan Idris, Python Data Analysis, Packt Publishing, UK, 2014 (freely available online)
- 2. Fabio Nelli, Python Data Analytics with Pandas, NumPy and Matplotlib, 2nd Edition, Apress, 2018.

- 1. Wesley J Chun, Core Python Programming, Prentice Hall, Second Edition, 2006
- 2. Wes McKinney, Python for Data Analysis, O'Reilly -2013

INT18R361	DATA SCIENCE USING R PROGRAMMING		L	T	P	C				
IN116K301	DATA SCIENCE USING R PROGRAMINING			3	0	1	3.5			
Prerequisite	Database Management Systems (INT18R371)									
Course	Professional Elective									
Category										
Course	Theory with	Theory with Practice								
Type										
Objective(s)	The student	The student will be able to learn								
	• Students	will develop r	elevant progra	amming abilit	ies.					
	• Students	will develop to	he ability to b	uild and asses	s data-l	oased m	odels.			
	• Students	will demonstr	ate skill in dat	ta managemer	ıt.					
	• Students	will apply dat	a science cond	cepts and metl	hods to	solve p	roblems	s in		
	real-world contexts and will communicate these solutions effectively									
Course Outco	ome(s)									
CO1	Examine the	data, generate	hypothesis ar	nd quickly tes	t them					
CO2	Transform th	e dataset into	a form conver	nient for analy	/sis					
CO3	Learn power	ful R tools for	solving data p	problems with	greate	r clarity	and eas	se		
CO4		w-dimensional				in the d	ataset			
CO5	Learn R Mar	kdown for inte	egrating prose	, code and res	sults					
Mapping of (	COs with ABI	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	)6		
CO1		Н	Н							
CO2	Н		M				HH			
CO3				Н						
CO4	Н			Н			Н			
CO5			Н							

### Unit I - Explore

Introduction to Data Science - **Data Visualization with ggplot2**- Introduction - First steps - Aesthetic Mappings - Common Problems - Facets - Geometric objects- Statistical Transformations - Positional Adjustments - **Data Transformation with dplyr:** Introduction - Filter Rows with filter() - Arrange Rows with arrange() - Select Columns with select() - Add New Variables with mutate() - **Exploratory Data Analysis:** Introduction- Questions-Variations- Missing values- Covariation - Patterns and Models - ggplot2 Calls.

## Unit II - Wrangle

**Tibbles with tibble** – Introduction - Creating Tipples - Tibbles Vs data.frame - Data Import with readr- Introduction - Parsing a vector - Parsing a file – writing to a file – **Tidy Data with tidyr** – Introduction – Tidy Data – Spreading and Gathering – Separating and Pull – Missing Values – Nontidy Data – **Relational Data with dplyr** – Introduction – nycflights13 – Keys- Mutating Joins – Filtering Joins – Join Problems – Set Operations – Strings with stringr – String Basics – Matching Patterns with Regular Expressions.

## Unit III - Program

**Pipes with magrittr** – Introduction – Piping Alternatives – When Not to use the Pipe – other tools from magrittr – **Functions** – Introduction – Function are for Humans and Computers – Conditional Execution – Function Arguments – Return Values – Environment – **Vectors** –

Introduction – Vector Basics – Important types of Atomic Vector – Using Atomic Vectors – Recursive Vectors (Lists) – Attributes – Augmented Vectors – **Iteration with purr** – Introduction – For Loops – For Loop Variations – For Loop Vs Functionals – The Map Functions – Mapping over Multiple Arguments.

### **Unit IV - Model**

**Model Basics with modelr** – Introduction – A simple model – Visualizing Models – Formulas and Families – Missing Values – Other Model Families – **Model Building** – Introduction – Why are Low-Quality Diamonds More Expensive? – What Affects the Number of Daily Flights? – Learning more about Models – **Many Models with purr and broom** – Introduction – gapminder – List-Columns – Creating List-Columns – Simplifying List-columns – Making Tidy Data with broom.

#### **Unit V - Communicate**

R Markdown – Introduction – R Markdown Basics – Text Formatting with Markdown – Code Chunks – Troubleshooting – YAML Header – **Graphics for Communication with ggplot2** – Introduction – Label – Annotations – Scaling – Zooming – Themes – Saving your plots – R Markdown Formats – Introduction – Output options – Documents – Notebooks – Presentations – Dashboards – Interactivity – Websites – Other Formats

## **TEXT BOOK(S):**

1. Hadley Wickham, Garrett Grolemund, "R for Data Science Import, Tidy, Transform, Visualize and Model Data", O'Reilly, 2017.

- 1. Matthias Templ, "Simulations for Data Science with R", Packt Publisher, 2016.
- 2. Yu-Wei, David Chiu, "R for Data Science Cookbook", Packt Publisher, 2016

INT18R451	COMPONENT BASED				T	P	C		
1N110N431	,	TECHNOLOG	Y	3	0	1	3.5		
Prerequisite	Object Oriented Programming (INT18R273)								
Course	Professional Elective								
Category									
Course	Theory with Practice								
Type									
Objective(s)		To deal with the fundamental properties of components, technology and architecture and middleware.							
			e to java based co	mponent	technol	ogies si	ich as		
		EJB and RMI.	o to juva oasoa oo	mponem		08100 01			
			omponent techno	logies su	ch as C	ORBA,	ORB		
	and applicat		•	C					
	To introduce	e COM, DCOM	and .NET techno	logies.					
	To identify the component frameworks and its development								
Course Outco	ome(s)								
CO1		-	can be the key t		sful soft	ware d	lesign,		
		construction & delivery of software solutions through reuse							
CO2		the Java realizat	tion of componer	its includ	ing Java	Beans	, EJB,		
	and Java RMI								
CO3			ation of compone						
CO4			out distributed ob		ms and	masteri	ng the		
	.NET realization of components (.NET assemblies)								
	CO5 Provide in depth knowledge in component frameworks & its development								
	Mapping of COs with ABET SOs								
CO\SO	SO1	SO2	SO3	SO4		SO	5		
CO1	Н		Н						
CO2		M		Н		<u>H</u>			
CO3	Н		Н			Н			
CO4			M	<u>H</u>		Н			
CO5									

### **UNIT 1: INTRODUCTION**

Software Components – objects – fundamental properties of Component technology – modules – interfaces – callbacks – directory services – component architecture – components and middleware. Practical: Development of simple com components in VB and use them in applications.

### **UNIT 2: JAVA BASED COMPONENT TECHNOLOGIES**

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP. Practical: Deploying EJB for simple arithmetic operator.

### **UNIT 3: CORBA COMPONENT TECHNOLOGIES**

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model – containers – application server – model driven architecture. Practical: SIMPLE APPLICATION USING

#### **CORBA**

#### . UNIT 4: NET BASED COMPONENT TECHNOLOGIES

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components - assemblies – appdomains – contexts – reflection – remoting. Practical: Sample applications.

#### UNIT 5: COMPONENT FRAMEWORKS AND DEVELOPMENT

Connectors – contexts – EJB containers – CLR contexts and channels – Component Frameworks- Object-Oriented Frameworks (OOFW) - Black Box component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools - assembly tools. Practical: Distributed objects deployment-EJB and CORBA

#### TEXT BOOK

1. Clemens Szyperski, "Component Software: Beyond Object-Oriented Programming", Pearson Education publishers, 2003.

- 1. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 2002.
- 2. Mowbray, "Inside CORBA", Pearson Education, 2003.
- 3. Freeze, "Visual Basic Development Guide for COM & COM+", BPB Publication, 2001.

INT18R401	DDINCIDI I	ES OF COMPIL	ED DECICN	L	T	P	С			
IN 1 18K4U1	PRINCIPLI	28 OF COMPIL	LEK DESIGN	3	1	0	4			
Prerequisite	Programming for		ıg (CSE18R171)							
Course	Professional Elec	ctive								
Category										
Course	Theory									
Type										
Objective(s)	<ul> <li>To understa</li> </ul>	To understand the ousies of compatition								
	<ul> <li>To understa</li> </ul>	To understand the process in compilation of a programs								
	<ul> <li>To understa</li> </ul>	To understand the computer's way of generating code.								
	<ul> <li>To understa</li> </ul>	To understand the optimization techniques in code generation								
Course Outco	ome(s)									
CO1	Understand the b	asics of compila	tion(computing)							
CO2	Understand gram	mar of compiler	S							
CO3	Understand the i	ntermediate form	of codes in comp	ilers						
CO4	Understand the c	ode generation t	echnique(Machine	code)						
CO5	Understand the c	ptimization of co	ode in compilers							
Mapping of C	COs with ABET S	SOs								
CO\SO	SO1	SO2	SO3	SO4		SO:	5			
CO1			Н							
CO2	Н	H M L								
CO3			Н							
CO4	Н		Н							
CO5	M									

#### UNIT 1: INTRODUCTION TO COMPILING

Compilers – Analysis of the source program – Phases of a compiler – Cousins of the Compiler – Grouping of Phases – Compiler construction tools - Lexical Analysis - Role of Lexical Analyzer – Input Buffering – Specification of Tokens - Recognition of tokens.

#### **UNIT 2: SYNTAX ANALYSIS**

Role of the parser –Writing Grammars –Context-Free Grammars – Top Down parsing – Recursive Descent Parsing – Predictive Parsing – Bottom-up parsing – Shift Reduce Parsing – Operator Precedent Parsing – LR Parsers – SLR Parser – Canonical LR Parser - LALR Parser.

# **UNIT 3: INTERMEDIATE CODE GENERATION**

Intermediate languages – Declarations – Assignment Statements – Boolean Expressions – Case Statements – Back patching – Procedure calls.

#### **UNIT 4: CODE GENERATION**

Issues in the design of code generator – The target machine – Runtime Storage management – Basic Blocks and Flow Graphs – Next-use Information – A simple Code generator – DAG representation of Basic Blocks – Peephole Optimization.

#### UNIT 5: CODE OPTIMIZATION AND RUN TIME ENVIRONMENTS

Introduction—Principal Sources of Optimization—Optimization of basic Blocks—Introduction to Global Data Flow Analysis—Runtime Environments—Source Language issues—Storage Organization—Storage Allocation strategies—Access to non-local names—Parameter Passing.

# **TEXT BOOK**

1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Pearson Education Asia, 2011.

- 1. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.

INIT10D 403	CA	ME DDOCD A N	AMINO	L	T	P	С			
INT18R402	GA.	ME PROGRAN	IMING	3	1	0	4			
Prerequisite	Programming for	or Problem Solvi	ng (CSE18R171)							
Course	Professional Ele	Professional Elective								
Category										
Course Type	Theory									
Objective(s)	To know t	he mechanics an	d logic of Game d	esign						
	<ul> <li>To train th</li> </ul>									
	<ul> <li>To acquire</li> </ul>	To acquire knowledge about the issues in game design								
	To gain sk	To gain skill in game engine development								
Course Outcor										
CO1	Have knowledg	e on the concept	s and techniques u	ısed in Gar	ne design	n				
CO2		del interactive ga								
CO3			ns and techniques	applied to	Game de	esign				
CO4	Analyze the var	ious Gaming pla	tforms and Netwo	rks						
CO5		gaming application								
Mapping of Co	Os with ABET S	Os								
CO\SO			Н							
CO1	Н	Н	L							
CO2		Н	Н							
CO3	Н	H H								
CO4	Н			M	L	,				
CO5			Н							
Course Topic(	Course Topic(s)									

# UNIT 1: 3D GRAPHICS FOR GAME PROGRAMMING

Coordinate Systems, Ray Tracing, Modeling in Game Production, Vertex Processing Rasterization, Fragment Processing and Output Merging, Illumination and Shaders, Parametric Curves and Surfaces, Shader Models, Image Texturing, Bump Mapping, Advanced Texturing, Character Animation, Physics-based Simulation

#### **UNIT 2: GAME DESIGN PRINCIPLES**

Character development, Story Telling, Narration, Game Balancing, Core mechanics, Principles of level design, Genres of Games, Collision Detection, Game Logic, Game AI, Path Finding

#### **UNIT 3: GAMING ENGINE DESIGN**

Renderers, Software Rendering, Hardware Rendering, and Controller based animation, Spatial Sorting, Level of detail, collision detection, standard objects, and physics

#### **UNIT 4: GAMING PLATFORMS AND FRAMEWORKS**

Flash, DirectX, OpenGL, Java, Python, XNA with Visual Studio, Mobile Gaming for the Android, iOS, Game engines - Adventure Game Studio, DX Studio, Unity

# **UNIT 5: GAME DEVELOPMENT**

Developing 2D and 3D interactive games using OpenGL, DirectX – Isometric and Tile Based Games, Puzzle games, Single Player games, Multi Player games.

#### **TEXT BOOK**

- 1. David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" Morgan Kaufmann, 2 Edition, 2006.
- 2. Jung Hyun Han, "3D Graphics for Game Programming", Chapman and Hall/CRC,1st

edition, 2011.
REFERENCES

- 1. Mike Mc Shaffrfy, "Game Coding Complete", Third Edition, Charles River Media, 2009.
- 2. Jonathan S. Harbour, "Beginning Game Programming", Course Technology PTR, 3 edition, 2009.
- 3. Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", Prentice Hall 1st edition, 2006.

INIT10D 453	PROGE	RAMMING W	ITH OPEN S	SOURCE	L	T	P	C	
INT18R452		SOFT	WARE		3	0	1	3.5	
Prerequisite	Programmi	ng for Problen	n Solving (CSI	E18R171)					
Course	Professiona	al Elective							
Category									
Course Type	Theory wit	h Practice							
Objective(s)	• To lea	To learn about the various Linux distributions.							
	• To lea	To learn the programming practices in FOSS							
	• To ex	plore Linux en	nbedded device	e					
	• To ac	quire the kno	wledge of ope	en source pro	ogramn	ning usir	ng embe	edded	
		• To acquire the knowledge of open source programming using embedded Linux device.							
<b>Course Outc</b>									
CO1	Work in the	e linux enviror	ment and cont	tribute to free	and op	en source	e softwa	ıre	
CO2		content manag							
CO3	Install and	configure linu	x operating sys	stem distribut	ion in e	mbedded	device	s that	
	support lin								
CO4		le hardware pr				es			
CO5	Create web	programming	using embedd	led linux devi	ce				
Mapping of	COs with AB	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	)6	
CO1	Н		Н						
CO2		Н							
CO3	M	Н					Н	[	
CO4			Н	Н					
CO5			Н	M					

### UNIT 1: INTRODUCTION TO LINUX BASED DISTRIBUTIONS

Philosophy - licenses - Distributions - Desktop environments - Bash commands - Files and file systems - Partitions- Practical: Installing software - Configuration, Bash commands

#### **UNIT 2: PROGRAMMING TECHNIQUES AND PRACTICES**

Programming using python - GUI development - Menu and toolbar - Layout management - event-dialog - widget - Programming practices - Documentation - use of version control system in FOSS. Practical: GUI development

# UNIT 3: OVERVIEW OF AN EMBEDDED LINUX DEVICE

Peripherals - Choice of distribution and installation - commands - files and file systems - configuration - game programming. Practical: File systems

# UNIT 4: WEB PROGRAMMING USING EMBEDDED LINUX DEVICE

Web server - Linux - Apache - Mysql - Php - Content management systems - adding content - text - images - components, modules and plugin- development of a sample content management site. Practical: Mysql

#### **UNIT 5: INTERFACE WITH OTHER HARDWARE**

Basic Inputs and outputs - Scheduling commands with Cron - installing and testing GPIO with python- Expansion boards - Prototyping boards. Practical: Scheduling commands

# TEXT BOOK

1. Roderick W Smith, "Linux Essentials", Wiley Publications, 2012.

- 1. Simon Monk, "Programming the Raspberrypi: Getting started with python", McGraw Hill, 2013
- 2. Stephen Burge, Joomla! 3 Explained: Your step-by-step guide, Pearson education, 2014.

INT18R453	MUI		AND COMPU	TER	L	T	P	C		
11111011433		GRA	PHICS		3	0	1	3.5		
Prerequisite	Data Structu	res and Algor	ithm (INT18R	271)						
Course	Program Con	re								
Category										
Course	Theory with	Theory with practical								
Type										
Objective(s)	<ul><li>To promodeling</li><li>To Unstandar</li></ul>	<ul> <li>To understand computational development of graphics with mathematics</li> <li>To provide in-depth knowledge of display systems, image synthesis, shape modeling of 3D application.</li> <li>To Understand basic concepts related to Multimedia including data standards, algorithms and software</li> <li>To Experience development of multimedia software by utilizing existing</li> </ul>								
	-		•		lware	by utiliz	zing ex	isting		
Course Outco		s and descrip	tions of algorit	LIIIIS						
Course Outco		the proficions	y in 2D comp	iter graphics A	DI pro	arommi	na			
CO2				puter system v				a and		
CO2			D visual inform		V1111 1110	odenng,	anarysi	is and		
CO3	Understand	different realiz	zations of mult	timedia tools						
CO4				ıltimedia tools						
CO5			e of different n	nedia streams i	in mult	imedia	transmis	ssion		
Mapping of (	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	S	O5	SO	)6		
CO1		Н								
CO2		Н	Н							
CO3	M		Н							
CO4			Н			M	Н			
CO5	Н		Н				M	1		
C T :	( )									

#### **UNIT 1: MULTIMEDIA SYSTEMS DESIGN**

An Introduction – Multimedia applications – Multimedia System Architecture – Evolving technologies for Multimedia – objects used in Multimedia systems – Multimedia Data interface standards – Multimedia Databases

#### **UNIT 2: MULTIMEDIA FILE HANDLING**

Compression & Decompression Algorithms—Data & File Format standards—Multimedia I/O technologies - Digital voice and audio — video image and animation — Full motion video — Storage and retrieval Technologies.

#### **UNIT 3: HYPERMEDIA**

Multimedia Authoring & User Interface – Multimedia Messaging - Hypermedia messaging – Hypermedia message component – creating Hypermedia message – Integrated multimedia message standards – Integrated Document management – Distributed Multimedia Systems.

# **UNIT 4: OUTPUT PRIMITIVES**

Introduction - Line - Curve and Ellipse Algorithms - Attributes -Two-Dimensional Geometric Transformations - Two-Dimensional Viewing.

# **UNIT V: THREE-DIMENSIONAL CONCEPTS**

Three-Dimensional Object Representations – Three-Dimensional Geometric and Modeling Transformations – Three-Dimensional Viewing – Color models – Animation

#### **TEXT BOOKS**

- 1. Prabat K Andleigh and Kiran Thakrar, "Multimedia Systems and Design", PHI, 2013.
- 2. Donald Hearn and M.Pauline Baker, "Computer Graphics C Version", Pearson Education, 2009.

#### REFERENCES

- 1. Judith Jeffcoate, Multimedia in practice technology and Applications, PHI, 2007.
- 2. Foley, Vandam, Feiner, Huges, 'Computer Graphics: Principles & Practice', Pearson Education, second edition 2003.

#### PRACTICAL EXPERIMENTS

- 1. To implement Bresenham's algorithms for line, circle and ellipse drawing
- 2. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing.
- 3. To implement Cohen-Sutherland 2D clipping and window-view port mapping
- 4. To perform 3D Transformations such as translation, rotation and scaling.
- 5. To visualize projections of 3D images.
- 6. To convert between color models.
- 7. To implement RLE compression algorithm
- 8. To implement image compression algorithm
- 9. To perform animation using any Animation software.
- 10. To perform basic operations on image using any image editing software

INT18R454	C#	AND .NET P	DOCDAMM	INC	L	T	P	C	
IN116K454	C#	AND NEI P	ROGRAMINI	ING	3	0	1	3.5	
Prerequisite	Object Orien	nted Programn	ning (INT18R	273)					
Course	Program Cor	re							
Category									
Course	Theory with	heory with practical							
Type									
Objective(s)	• To und	To understand .NET framework and C#.							
	• To und	To understand Object oriented concepts of C#.							
	• To und	To understand and design Application using C#							
	• To und	To understand Web based application development.							
	To understand in depth concepts of .NET framework								
<b>Course Outc</b>		•	•						
CO1	Understand	the C# program	mming model						
CO2		Object oriente							
CO3	Model and s	sole Data base	applications u	sing C#					
CO4	Understand	and Design w	eb based desig	gn					
CO5	Understand	the .NET worl	kflow in detail						
Mapping of	COs with AB	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	6	
CO1			Н						
CO2	M	Н					Н	[	
CO3						Н		-	
CO4	Н				1	M	Н	[	
CO5	Н		Н						

#### **UNTI 1: INTRODUCTION TO C#**

Introducing C#, Understanding .NET, overview of C#, Literals, Variables, Data Types, Operators, checked and unchecked operators, Expressions, Branching, Looping, Methods, implicit and explicit casting, Constant, Arrays, Array Class, Array List, String, String Builder, Structure, Enumerations, boxing and unboxing.

# **UNIT 2: OBJECT ORIENTED ASPECTS OF C#**

Class, Objects, Constructors and its types, inheritance, properties, indexers, index overloading, polymorphism, sealed class and methods, interface, abstract class, abstract and interface, operator overloading, delegates, events, errors and exception, Threading.

# **UNIT 3: APPLICATION DEVELOPMENT ON .NET**

Building windows application, Creating our own window forms with events and controls, menu creation, inheriting window forms, SDI and MDI application, Dialog Box(Modal and Modeless), accessing data with ADO.NET, DataSet, typed dataset, Data Adapter, updating database using stored procedures, SQL Server with ADO.NET, handling exceptions, validating controls, windows application configuration.

#### UNIT 4: WEB BASED APPLICATION DEVELOPMENT ON .NET

Programming web application with web forms, ASP.NET introduction, working with XML and .NET, Creating Virtual Directory and Web Application, session management techniques, web.config, web services, passing datasets, returning datasets from web services, handling

transaction, handling exceptions, returning exceptions from SQL Server.

#### UNIT 5: CLR AND .NET FRAMEWORK

Assemblies, Versoning, Attributes, reflection, viewing meta data, type discovery, reflection on type, marshalling, remoting, security in .NET

#### **TEXT BOOKS:**

- 1. Herbert Schildt, "The Complete Reference: C# 4.0", 4th Edition Tata McGraw Hill, 2012.
- 2. Christian Nagel et al. "Professional C# 2012 with .NET 4.5", Wiley India, 2012.

#### **REFERENCES:**

- 1. Andrew Troelsen, "Pro C# 2010 and the .NET 4 Platform", Fifth edition, A Press, 2010.
- 2. Ian Griffiths, Matthew Adams, Jesse Liberty, "Programming C# 4.0", Sixth Edition, O"Reilly, 2010.

#### PRACTICAL COMPONENTS

- 1. To write a C# program using Branching and Looping statements
- 2. To write a C# program using Arrays and Strings methods.
- 3. To write a C# program using Structures and enumerations
- 4. To write a C# program using inheritance concepts.
- 5. To write a C# program using Polymorphism.
- 6. To write a C# program using interfaces.
- 7. To write a C# program by using operator overloading
- 8. To write a C# program using delegates, events, errors and exceptions.
- 9. To write a C# program using Errors and Exceptions.
- 10. To build a calculator widget in windows application using C#.

# **Software Management**

INT18R353		DATA WA	REHOUS	ING		L	T	P	C	
11/11/08353		AND	MINING			3	0	1	3.5	
Prerequisite	Database M	anagement S	Systems (IN	NT18R371)	)					
Course	Professional	l Elective								
Category										
Course	Theory with	Theory with Practice								
Type										
Objective(s)	• To	• To know the concepts and techniques of data mining and data								
	ware	chousing								
	• To u	To understand the systems for data warehousing and/or data mining								
Course Outco	ome(s)									
CO1	Learn conce	epts in Data	Warehouse	es and impl	ementat	ion of a	architecti	ıres		
CO2	Learn data p	oreprocessing	g, language	e, architectu	ires, con	cept de	escription	1		
CO3	Learn to use	Association	n Rule Min	ing						
CO4	Learn Class	ification And	d Clusterin	g Techniqu	ies					
CO5	Learn Rece	nt Trends .ir	n Data Min	ing						
Mapping of (	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	3	SO4	S	O5	SC	)6	
CO1			Н							
CO2							Н			
CO3	Н	Н			Н		M	N	1	
CO4	Н	Н						N	1	
CO5			Н							
Course Topic	Course Topic(s)									

#### UNIT 1: INTRODUCTION TO DATA WAREHOUSING

Introduction - Data Warehouse - Multidimensional Data Model - Data Warehouse Architecture – Implementation - Further Development - Data Warehousing to Data Mining. Practical: Data Model

# UNIT 2: DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Pre processing - Cleaning, Integration - Transformation - Reduction - Discretization - Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces - Architectures - Concept Description - Data Generalization - Characterizations - Class Comparisons - Descriptive Statistical Measures. Practical: Query Language

#### **UNIT 3: ASSOCIATION RULES**

Association Rule Mining - Single-Dimensional Boolean Association Rules from Transactional Databases - Multi-Level Association Rules from Transaction Databases. Practical: Association Rules

#### **UNIT 4: CLASSIFICATION AND CLUSTERING**

Classification and Prediction – Issues - Decision Tree Induction - Bayesian Classification - Association Rule Based - Other Classification Methods – Prediction - Classifier Accuracy - Cluster Analysis - Types of data - Categorization of methods - Partitioning methods - Outlier

Analysis. Practical: Categorization of methods

#### **UNIT 5: RECENT TRENDS**

Multidimensional Analysis and Descriptive Mining of Complex Data Objects -Spatial Databases - Multimedia Databases - Time Series and Sequence Data - Text Databases - relationless databases - World Wide Web -Applications and Trends in Data Mining. Practical: Spatial Databases - Multimedia Databases

#### **TEXT BOOK**

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India Morgan Kauffman, 2011.

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2006.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2009.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.

INT18R354	ADVANCED DBMS			L	T	P	C			
					3	0	1	3.5		
Prerequisite	Database M	anagement Sy	stems (INT18)	R371)						
Course	Professional	l Elective								
Category										
Course	Theory with	Theory with Practice								
Type										
Objective(s)	• Learn	Learn different types of databases.								
	Be exp	Be exposed to query languages.								
	Be far	Be familiar with the indexing techniques.								
<b>Course Outc</b>	ome(s)									
CO1	To understa	nd the underly	ing principles	of Relational	Datab	ase Man	agemer	nt		
	System.									
CO2	To understa	nd and implen	nent the advan	ced features of	of DBN	IS.				
CO3	To develop	database mode	els using distri	buted databas	ses.					
CO4	To Understa	and the Query	Processing							
CO5	To impleme	ent and maintai	n an efficient	database syst	em usi	ng emerg	ging tre	nds		
Mapping of C	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	D6		
CO1			Н							
CO2	Н	H M								
CO3	Н	Н	M			Н	N	Л		
CO4		Н	M	Н						
CO5			M	Н		M	I	Η		

#### UNIT 1: PARALLEL AND DISTRIBUTED DATABASES

Inter and Intra Query Parallelism – Architecture – Query evaluation – Optimization – Distributed Architecture – Storage – Catalog Management – Query Processing – Transactions – Recovery – Large-scale Data Analytics in the Internet Context – Map Reduce Paradigm – runtime system for supporting scalable and fault-tolerant execution – paradigms: Pig Latin and Hive and parallel databases versus Map Reduce. Practical: DDL, DML, TCL commands

#### UNIT 2: ACTIVE DATABASES

Syntax and Sematics (Starburst, Oracle, DB2) – Taxonomy – Applications – Integrity Management – Workflow Management – Business Rules – Design Principles – Properties – Rule Modularization – Rule Debugging – IDEA methodology – Open Problems. Practical: DB2 AULibrary.com

#### UNIT 3: TEMPORAL AND OBJECT DATABASES

Overview – Data types – Associating Facts – Temporal Query Language – TSQL2 – Time Ontology – Language Constructs – Architecture – Temporal Support – Object Database and Change Management – Change of Schema – Implementing Database Updates in O2 – Benchmark Database Updates – Performance Evaluation. Practical: SQL

# **UNIT 4: COMPLEX QUERIES AND REASONING**

Logic of Query Languages – Relational Calculi – Recursive rules – Syntax and semantics of Data log – Fix point semantics – Implementation Rules and Recursion – Rule rewriting methods – Compilation and Optimization – Recursive Queries in SQL – Open issues. Practical: SQL

#### UNIT 5: SPATIAL, TEXT AND MULTIMEDIA DATABASES

Traditional Indexing Methods (Secondary Keys, Spatial Access Methods) – Text Retrieval – Multimedia Indexing – 1D Time Series – 2d Color images – Sub pattern Matching – Open Issues – Uncertainties. Practical: SQL Programs

#### **TEXT BOOK:**

1. Raghu Ramakrishnan "Database Management System", Mc Graw Hill Publications, McgrawHill Publications, 2014 reprint.

- 1. Carlo Zaniolo, Stefano Ceri "Advanced Database Systems", Morgan Kauffmann Publishers. 2007
- 2. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

INT18R302	INFOR	MATION ST	ORAGE M.	ANAGEMEN	T -	L 3	T 1	P 0	C 4	
Prerequisite	Database	Management	Systems (INT	(18R371)						
Course Category		nal Elective	•	,						
Course Type	Theory									
Objective(s)	<ul> <li>Description</li> <li>Storate physics</li> <li>Description</li> <li>Description</li> <li>Description</li> <li>Description</li> </ul>	<ul> <li>Understand Storage Area Networks characteristics and components.</li> <li>Describe the challenges associated with data center networking and the need for switch network convergence.</li> <li>Storage Area Networks including storage architectures, logical and physical components of a storage infrastructure, managing and monitoring the data center.</li> <li>Describe the business continuity and disaster recovery in a storage infrastructure.</li> <li>Describe the different backup and recovery topologies and their role in providing disaster recovery and business continuity capabilities.</li> <li>Identify key areas to monitor in a data center for different components</li> </ul>								
Course Outc										
CO1		nd describe th	e functions to	build data cer	nter ne	etwor	king	for sv	vitch	
CO2	Discuss of infrastruc	• 1	s of logical a	and physical	compo	onent	s of	a sto	rage	
CO3	communi	cate with eac	h other and	ber Channel the benefits on environme	of th					
CO4				torage infrastr		and	list s	olutio	ns	
CO5			e common the	reats in each d	omair	1				
Mapping of										
CO\SO	SO1									
CO1	<del></del>		Н							
CO2	Н	**	**			**				
CO3		Н	Н			<u>H</u>				
CO4	T.T.		M			H				
CO5	H									

# UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY

Review data creation and the amount of data being created and understand the value of data to a business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

#### **UNIT 2: STORAGE SYSTEMS ARCHITECTURE**

Hardware and software components of the host environment - Key protocols and concepts used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications - Concept of

RAID and its components - Different Raid levels and their suitability for different application environments: RAID 0 RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6 - Compare and contrast integrated and modular storage systems - High-level architecture and working of an intelligent storage system.

#### **UNIT 3: INTRODUCTION TO NETWORKED STORAGE**

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for long-term archiving solutions and describe how CAS fulfills the need - Understand the appropriateness of the different networked storage options for different application environments.

# UNIT 4: INFORMATION AVAILABILITY & MONITORING & MANAGING DATA CENTER

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO - Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies - replication technologies and their role in ensuring information availability and business continuity - Remote replication technologies and their role in providing disaster recovery and business continuity capabilities - Identify key areas to monitor in a data center - Industry standards for data center monitoring and management - key metrics to monitor for different components in a storage infrastructure - key management tasks in a data center.

#### UNIT 5: SECURING STORAGE AND STORAGE VIRTUALIZATION

Information security - Critical security attributes for information systems - Storage security domains - List and analyzes the common threats in each domain - Virtualization technologies - block-level and file-level virtualization technologies and Processes

#### **TEXT BOOK**

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2nd edition, 2012.

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- 2. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

INT18R355		DATA AN	NALYTICS		L	T	P	C		
11/11/08355		DATA AN	VALTICS		3	0	1	3.5		
Prerequisite	Database M	Ianagement Sy	ystems (INT18	R371)						
Course	Professiona	l Elective								
Category										
Course	Theory with	Theory with Practice								
Type										
Objective(s)	• To pro	ovide the stude	ents with a fund	damental Of I	Big Dat	a Analyt	tics			
	• To acc	quire skills vai	rious Data Ana	lytics.						
	• To int	roduce Data N	Ining Stream	concepts.						
	To familiarize the students with Clustering and Framework concepts									
Course Outc	ome(s)			_						
CO1	Understand	the Big Data	Platform and N	Modern data a	nalytic	Tools				
CO2	Learn neura	al networks, F	Fuzzy logic and	l data analytic	conce	pts				
CO3	Learn Data	Mining rules	to implement a	and Analysis						
CO4	Understand	types of clust	ering							
CO5	Understand	and impleme	ent the data ana	alytic tools-M	ap redu	ice and H	Hadoop			
Mapping of (	COs with AB	BET SOs								
CO\SO	SO1	SO2	SO3	SO4	5	SO5	S	O6		
CO1			Н							
CO2	Н	H M								
CO3	M					M	l	M		
CO4			Н							
CO5		M					]	Н		

#### UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems - Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting - Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error. Practical: Hadoop Map Reduce job flow

#### **UNIT 2: DATA ANALYSIS**

Regression modeling, Multivariate analysis, Bayesian modeling, inference and Bayesian networks, Support vector and kernel methods, Analysis of time series: linear systems analysis, nonlinear dynamics - Rule induction - Neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, Stochastic search methods. Practical: Creating and customizing applications to analyze data

#### **UNIT 3: MINING DATA STREAMS**

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Realtime Analytics Platform(RTAP) applications - case studies - real time sentiment analysis, stock market predictions. Practical: Implementing a targeted Big Data strategy

#### **UNIT 4: FREQUENT ITEMSETS AND CLUSTERING**

Mining Frequent itemsets - Market based model – Apriori Algorithm – Handling large data sets

in Main memory – Limited Pass algorithm – Counting frequent itemsets in a stream – Clustering Techniques – Hierarchical – K- Means – Clustering high dimensional data – CLIQUE and PROCLUS – Frequent pattern based clustering methods – Clustering in non-euclidean space – Clustering for streams and Parallelism. Practical: Apply different classification techniques to classify the given data set

#### **UNIT 5: FRAMEWORKS AND VISUALIZATION**

MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed file systems – Visualizations - Visual data analysis techniques, interaction techniques; Systems and applications. Practical: Apply various association rule mining algorithms

#### **TEXT BOOKS**

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2nd edition, 2012.

- 1. Bill Franks, T"aming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.
- 2. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O"Reilly, 2011.
- 3. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.

	SOFT	WARE OUAI	LITY ASSUR	ANCE	L	T	P	C			
INT18R303				HICE	3	0	0	3			
Prerequisite		gineering (IN	T18R359)								
Course	Professional	l Elective									
Category	T01	Theory									
Course	Theory										
Type Objective(s)	- TT1	TT 1 4 141 124									
Objective(s)	• Disting assurar	assurance and quality control.									
	<ul><li>and the</li><li>To presoftwar</li><li>To de</li></ul>	eir impact on fi esent the conc re developmen	inal product. epts, techniqu	es and metri	cs for	quality	assurar	nce in			
Course Outc	ome(s)	-									
CO1	Understand components		software quali	ty and learn	softwa	are proje	ect life	cycle			
CO2			ment methodo	logies and tes	ting in	nplement	tations.				
CO3	-	e capability magement stra	to create goo	od software	quality	/ infrast	ructure	with			
CO4	Evaluate the quality man	•	of software p	project and de	evelop	models	for so	ftware			
CO5	Obtain the k	nowledge abo	ut various qua	lity managem	ent sta	ndards.					
Mapping of C	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	D6			
CO1		H H									
CO2	Н							-			
CO3		M			1		ŀ	H			
CO4		Н									
CO5	Н	M	Н								
Course Tonic(s)											

# UNIT 1: INTRODUCTION TO SOFTWARE QUALITY & ARCHITECTURE

Need for Software quality – Quality challenges – Software quality assurance (SQA) – Definition and objectives – Software quality factors- McCall"s quality model – SQA system and architecture – Software Project life cycle Components – Pre project quality components – Development and quality plans.

# UNIT 2: SQA COMPONENTS AND PROJECT LIFE CYCLE

Software Development methodologies – Quality assurance activities in the development process-Verification & Validation – Reviews – Software Testing – Software Testing implementations – Quality of software maintenance – Pre-Maintenance of software quality components – Quality assurance tools – CASE tools for software quality – Software maintenance quality – Project

#### Management.

# **UNIT3:SOFTWAREQUALITYINFRASTRUCTURE**

Procedures and work instructions - Templates - Checklists - 3S development - Staff training and certification Corrective and preventive actions - Configuration management - Software change control - Configuration management audit -Documentation control - Storage and retrieval.

#### **UNIT 4: SOFTWARE QUALITY MANAGEMENT & METRICS**

Project process control – Computerized tools - Software quality metrics – Objectives of quality measurement – Process metrics – Product metrics – Implementation – Limitations of software metrics – Cost of software quality – Classical quality cost model – Extended model – Application of Cost model.

# **UNIT 5: STANDARDS, CERTIFICATIONS & ASSESSMENTS**

Quality manangement standards – ISO 9001 and ISO 9000-3 – capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – IEEE 1012 & 1028 – Organization of Quality Assurance – Department management responsibilities – Project management responsibilities – SQA units and other actors in SQA systems.

#### **TEXT BOOK**

1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.

- 1. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.
- 2. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 1997.

INT18R304	MORILE	APPLICATI	ON DEVELO	PMENT	L	T	P	C		
Ti i Tonco i	WODIEL	THE LICITI	ON DEVELO	T IVILLI VI	3	1	0	4		
Prerequisite	Object Orie	nted Programn	ning (INT18R	273)						
Course	Professiona	Professional Elective								
Category										
Course	Theory	heory								
Type										
Objective(s)		To introduce the programming techniques and design pattern of mobile application development.								
<b>Course Outc</b>	ome(s)									
CO1	Study about	t the mobile a	pplication mar	ket and web	service	es for va	rious n	nobile		
	devices									
CO2	Understand	Understand and develop the various Mobile Information Design and Mobile								
	Platforms	_								
CO3	Design the	User interface	with various	features of A	ndroid	SDK lil	ce disp	laying		
	pictures, me	enu etc								
CO4	Utilize the	messaging,	networking as	nd location	based	service	in Ar	ndroid		
	application									
CO5	Create, Deb	ug and build tl	he apps for the	latest Windo	ws and	l IOS				
Mapping of										
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	06		
CO1			Н							
CO2	M	M H M								
CO3	M	M H								
CO4			Н							
CO5		M		Н		Н	F	1		

#### **UNIT 1: INTRODUCTION**

Preliminary Considerations – Cost of Development – Importance of Mobile Strategies in Business World – Mobile Web Presence – Mobile Applications – Marketing – Web Services for Mobile Devices – Creating Example Web Service _ Debugging Web Service

#### **UNIT 2: MOBILE USER INTERFACE DESIGN**

Effective Use of Screen Real Estate – Understanding Mobile Application Users – Understanding Mobile Information Design – Understanding Mobile Platforms – Using the Tools for Mobile Interface Design – Choosing a Mobile Web Option – Adaptive Mobile Website – Mobile Web Applications with HTML 5

# **UNIT 3: ANDROID APPLICATION DEVELOPMENT**

Getting to know the Android User Interfaces – Designing Your User interface using Views – Displaying Pictures and Menus with Views – Using Image views to Display pictures – Using menus with views – Data Persistence – Saving and loading user performances - Persisting data to files – Creating and using Data bases – Content Providers.

# UNIT 4: ANDROID MESSAGING, NETWORKING, LOCATION BASED SERVICES SMS Messaging, Sending E-mail – Networking – Downloading Binary Data, Text FilesAccessing Web Services – Performing Asynchronous Calls – Location Based Services – Displaying Maps – Getting Location Data – Creating your own services – Communicating between a service and an activity – Binding activities to Services

# **UNIT 5: IOS AND WINDOWS PHONE**

Getting started with iOS – iOS Project – Debugging iOS Apps – Objective C Basics – Hello Word App – Building the derby app in iOS – Windows Phone 7 Project – Building Derby App in Windows Phone 7.

#### **TEXT BOOK**

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development," Wrox 2012.

- 1. Wei Meng Lee, "Beginning Android Application Development", Wiley 2011
- 2. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", Dream Tech.2012
- 3. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012
- 4. David Mark, Jack Nutting, Jeff LaMouche, and Fredric Olsson, "Beginning iOS6 Development: Exploring the iOS SDK", Apress, 2013

INT18R403		ENTERPRISE PLAN			L 3	T 0	P 0	C 3			
Prerequisite	Nil					•	•	•			
Course	Professiona	rofessional Elective									
Category											
<b>Course Type</b>	Theory	heory									
Objective(s)	• To kn	To know the basics of ERP									
	• To un	To understand the key implementation issues of ERP									
	• To kn	ow the business	modules of EI	RP							
	• To be	aware of some	popular produc	ets in the are	a of EF	RP					
	<ul> <li>To app</li> </ul>	preciate the cur	rent and future	trends in EI	RP						
Course Outco											
CO1	Understand	basics and key	implementation	n issues of	ERP						
CO2	Identify var	rious roles of hu	ıman resources	in an Enter	prise						
CO3	Aware of E	RP markets									
CO4	Learn funct	tional modules	in an ERP pack	age							
CO5	Study curre	ent trends and pa	redict future tre	ends in ERP							
Mapping of C	COs with ABE	T SOs									
CO\SO	SO1	SO2	SO3	SO4		SO5		SO6			
CO1			Н								
CO2		H M									
CO3			Н	Н				Н			
CO4	M		M								
CO5	Н	M									

#### **UNIT 1: INTRODUCTION**

ERP: An Overview, Enterprise – An Overview, Benefits of ERP- ERP and Related Technologies- Business Process Reengineering (BPR)- Data Warehousing- Data Mining - OLAP - SCM

#### **UNIT 2: ERP IMPLEMENTATION**

ERP Implementation Lifecycle - Implementation Methodology - Hidden Costs - Organizing the Implementation - Vendors - Consultants and Users - Contracts with Vendors - Consultants and Employees - Project Management and Monitoring

# **UNIT 3: THE BUSINESS MODULES**

Business modules in an ERP Package - Finance - Manufacturing (Production) - Human Resources - Plant Maintenance - Materials Management - Quality Management - Sales and Distribution

#### **UNIT 4: THE ERP MARKET**

ERP Market Place and Marketplace Dynamics - SAP AG - People soft - Baan - JD Edwards-Oracle corporation - QAD - SSA Global - Lawson software

#### **UNIT 5: ERP – PRESENT AND FUTURE**

Turbo Charge the ERP System – EIA - ERP and E-Business - ERP, Internet and WWW- ERP II - Future Directions and Trends in ERP

#### TEXT BOOK

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 3rd edition 2014.

- 1. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology, USA, 2001.
- 2. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning –Concepts and Practice", PHI, New Delhi, 2003.

INT18R404	SERVICE ORIENTED ARCHITECTURE				L	T	P	C			
11111011404	SERVIC	CE ORIENTE	D ARCIII L	CIUKE	3	0	0	3			
Prerequisite	Computer Architecture and Organization (CSE18R174)										
Course	Professional Elective										
Category											
Course	Theory	Theory									
Type											
Objective(s)		-	ots of distribute			-					
	• To d	ifferentiate XN	IL based web	services from	other s	tandard n	nodels				
	• To s	tudy the impor	tance of servic	e composition	1						
Course Outco	ome(s)										
CO1	Understand	crucial concep	ts of SOA								
CO2	Know the in	tegration of So	OA technologic	cal points with	h Web S	Services.					
CO3	Implement of	of SOA in deve	elopment cycle	of Web Serv	ices.						
CO4	Build SOA	based applicati	ons for Web se	ervices, some	of the p	orevailing	g standa	rds			
	and										
		es of Web Serv									
CO5			s based on Java	web Service	es						
Mapping of C	COs with AB	ET SOs			•						
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	96			
CO1	M										
CO2			Н								
CO3	L	L H									
CO4				M		Н	Н	[			
CO5	L	Н									

# UNIT 1: SOA FUNDAMENTALS

SOA – Services – Loose Coupling – The Enterprise service bus – Service Classification – Business process management – SOA and the organization – SOA and the organization - SOA in context – Message exchange patterns – SOA life cycle – Versioning – Web services

#### UNIT 2: SERVICE-ORIENTED ANALYSIS AND DESIGN

SOA Terminology and Concepts - REST Design Constraints and Goals - RESTful Service-Orientation - Service Contracts with REST - Service-Orientation and REST Service-Oriented Analysis and Design with REST - Mainstream SOA Methodology - Analysis and Service Modeling with REST - Service-Oriented Design with REST HTML - Cookies - Simple PHP scripts

#### **UNIT 3: SERVICE COMPOSITION**

Service Composition with REST - Fundamental Service Composition with REST - Advanced Service Composition with REST - Service Composition with REST Case Study - Design Patterns for SOA with REST - Service Versioning with REST - Uniform Contract Profiles

#### UNIT 4: RESTFUL SERVICES AND THE RESOURCE-ORIENTEDARCHITECTURE

Introducing the Simple Storage Service - Object-Oriented Design of S3 - URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - Resource Design - Turning Requirements into Read-Only Resources - Service Implementation - Web service case studies - Connect Resources to Each Other - Controller Code - Model Code

# **UNIT 5: SOA TRANSACTION AND SECURITY**

SOA and performance - SOA and security - Service Management - Model driven service deployment - Establishing SOA and SOA governance

# **TEXT BOOK**

- 1. Nicolai M.Josuttis, "SOA in design The art of distributed system design", O'REILLY publication, 2007.
- 2. 2. Raj Balasubramanian, Benjamin Carlyle, Thomas Erl, Cesare Pautasso, "SOA with REST Principles, Patterns & Constraints for building Enterprise solutions with REST", Prentice Hall/PearsonPTR, 2012.
- 3. 3. Leonard Richardson and Sam Ruby, "RESTful Web Services", O'REILLY publication, 2007.

# **REFERENCES**

1. Thomas Erl, "Service Oriented Architecture: Concepts, Technology, and Design", Pearson education, 2005.

# EMBEDDED AND SIGNAL PROCESSING

INT18R305	MOB	ILE COMMU	UNICATION	AND	L	T	P	C			
		COMP			3	1	0	4			
Prerequisite	Analog and Digital Communication Techniques (INT18R272)										
Course	Professiona	l Elective									
Category											
Course Type	Theory	Theory									
Objective(s)	<ul> <li>compu</li> <li>To and compu</li> <li>To mate as GSN</li> <li>To lead involved</li> </ul>	computing.									
Course Outco											
CO1	· · · · ·	the basic conc	epts of mobile	computing							
CO2		out internet pro	•		orotoco	1.					
CO3		the different l									
CO4	adhoc netwo							nds of			
CO5		sign and imple	ment mobile a	pplications in	n vario	us platfor	ms.				
Mapping of C				<u> </u>	1	,					
CO\SO	SO1	SO2	SO3	SO4	\$	SO5	SC	06			
CO1			Н								
CO2	Н										
CO3	H	M									
CO4	M	Н									
CO5		Н		M		Н	ŀ	H			
Course Topic	c(s)										

#### Course Topic(s)

# **UNIT 1: INTRODUCTION**

Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Random Assignment Schemes – Reservation Based Schemes. Practical: MAC Protocols

#### UNIT 2: MOBILE INTERNET PROTOCOL AND TRANSPORT LAYER

Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP – route Optimization. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of TCP Window – Improvement in TCP Performance. Practical: Key Distribution mechanisms

#### **UNIT 3: MOBILE TELECOMMUNICATION SYSTEM**

Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS). Practical: GSM Technique

#### **UNIT 4: MOBILE AD-HOC NETWORKS**

Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols – Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security. Practical: Routing Protocols

#### **UNIT 5: MOBILE PLATFORMS AND APPLICATIONS**

Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – M-Commerce – Structure – Pros & Cons – Mobile Payment System – Security Issues. Practical: Security Mechnisms

#### **TEXT BOOK**

1. Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi – 2012.

- 1. Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
- 2. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 3. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.

INT18R306	]	NFORMATI	ON CODING	1	L	T	P	C				
INTIONSUU	TECHNIQUES 3 1 0 4											
Prerequisite	Analog and Digital Communication Techniques (INT18R272)											
Course	Professional	Professional Elective										
Category												
Course	Theory	Theory										
Type												
Objective(s)		pose to stude		-			•	d the				
		nance characte				•						
		ose to student	s fundamental	s in coding a	nd its a	pplicatio	ns.					
<b>Course Outc</b>												
CO1	1	ic information		1 -								
CO2		different types										
CO3	Explain and	d analyse sou	rce coding co	ompression,	decodi	ng and	error c	ontrol				
	methods as	applied in con	nmunication sy	/stem.								
CO4	Analysis of	various text ar	nd image comp	pression tech	niques							
CO5	Analysis of	audio and vide	eo coding tech	niques								
Mapping of (	COs with AB	ET SOs										
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	06				
CO1			Н									
CO2	Н		M									
CO3	Н	M	Н			Н						
CO4	Н		L									
CO5	Н	M					I	I				

#### **UNIT 1: INFORMATION ENTROPY FUNDAMENTALS**

Uncertainty- Information and Entropy – Source coding Theorem – Huffman coding –Shannon Fano coding – Discrete Memory less channels – channel capacity – channel coding Theorem – Channel capacity Theorem.

# **UNIT 2: DATA AND VOICE CODING**

Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive sub band coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoder, LPC).

#### UNIT 3: ERROR CONTROL CODING

Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.

#### **UNIT 4: COMPRESSION TECHNIQUES**

Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards.

#### UNIT 5: AUDIO AND VIDEO CODING

Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG Video

standards.

# **TEXTBOOKS**

- 1. Simon Haykin & Michael Moher, "Communication Systems", John Wiley and Sons, 5th Edition, 2009.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002.

- 1. Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 1996.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.

INT18R307	BLUETOOTH TECHNOLOGY			L	T	P	C			
				<b>J1</b>	3	1	0	4		
Prerequisite	Computer Networks (CSE18R371)									
Course	Professional	Elective								
Category										
Course	Theory									
Type										
Objective(s)	<ul> <li>To Understand Bluetooth's standards, architecture and operation.</li> <li>To Understand the APIs, radio interface and protocol layers used by Bluetooth.</li> <li>To Configure Bluetooth-enabled devices including mobile phones, PDAs and Access Points.</li> <li>To Install and configure Bluetooth hardware and software.</li> <li>To Configure LAN access, remote access and FAX gateway access point solutions using Bluetooth</li> </ul>									
Course Outco	ome(s)									
CO1		e the students cerning discov	s about how erability	Bluetooth de	evices	pair set	up an	d the		
CO2	Analyze the	various kinds	of data transfe	er between Bl	uetoot	h devices	3			
CO3	Create trust	and security re	elated policies	which are ha	ndled l	y Blueto	ooth.			
CO4		Implement profiles like the Headset profile, LAN, OBEX, and Serial port compatible to specified applications.								
Mapping of C	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	)6		
CO1			Н							
CO2	Н	M								
CO3	M	Н								
CO4		Н					N	1		
CO5			Н							

# UNIT 1: BASIC CONCEPTS

Components-networks-Topologies-Protocols and Standards –ISO/OSI model-Origin- blue tooth SIG - Protocol stack - Security applications and profiles – management - test and qualification technology basics - RF and IR wireless communication.

# **UNIT 2: BLUETOOTH MODULE**

Antennas patterns - gain and losses- types of antennas- on chip antennas radio interference - FH, modulation, symbol timing, power emission and control, performance parameters - RF architecture - Blur RF - Base band - Blue tooth device address system timing - Physical links - packet structuring types and construction - channel coding and time base synchronization.

#### **UNIT 3: LINK CONTROLLER AND MANAGEMENT**

LCP- controller states - Pico net and scattered operations - Master / slave role switching LC Architectural overview - LMC - Link set up - Quality of service - LMP version - Name represent - Test mode.

#### **UNIT 4: BLUETOOTH HOST**

LLC and adaptation protocol L2 cap signaling – connections- Blue tooth profiles- Version 1.0-

Generic profiles-serial and object exchange.

# **UNIT 5: SECURITY**

Encryption and security Key generation - security Modes and architecture - Low power operation and QOS management.

# **TEXT BOOK**

1. Jennifer, Sturman, "Bluetooth Connect without cables", 2nd Edition, Pearson education 2005.

- 1. Brent A.Miller and Bisdikian C, "Bluetooth reveeled", 2nd Edition, Pearson Education 2002.
- 2. Muller J, "Blue tooth Demystified", Nathan Tata Mc Graw Hill 2001.

INT18R405	WIRELESS SENSOR NETWORKS				L	T	P	C			
					3	1	0	4			
Prerequisite	Computer Networks (CSE18R371)										
Course	Professional	Professional Elective									
Category											
Course	Theory										
Type											
Objective(s)	To teach the	e general prin	ciples of wire	less sensor n	etwork	s, and th	e state	of the			
	art in inform	nation process	ing in wireless	sensor netw	orks.						
Course Outco	ome(s)										
CO1	Demonstrate	e familiarity w	ith common v	vireless senso	or node	architect	ures				
CO2	Illustrate kn	owledge of M	AC and routin	g protocols	levelop	ed for W	SN				
CO3	Emphasize t	the importance	e of time synch	nronization a	nd loca	lization o	of WSN	[			
CO4	Interpret the	operating sys	tem developed	l for WSN							
CO5	Identify the	suitable topol	ogy for WSN								
Mapping of C	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4		SO5	SC	06			
CO1	M	M									
CO2		M	Н								
CO3	Н		Н								
CO4	L	M									
CO5	L			M							

# Course Topic(s) UNIT 1: INTRODUCTION AND OVERVIEW OF WIRELESS SENSOR NETWORKS

Introduction - Basic overview of the technology - Range of applications - Examples of category 1 and 2 WSN application - Sensor node technology - Sensor taxonomy - WN node operating environment - WN Trends - Wireless Transmission Technology and Systems - Applications of Wireless Sensor Network

#### UNIT 2: POWER MANAGEMENT AND ROUTING IN WSN

Distributed Power – Aware micro sensor networks - Dynamic voltage scaling techniques – Operating system for energy Scalable in WSN - Dynamic power management -Energy aware routing - Altruists or Friendly neighbors in the Pico radio sensor network - Aggregate queries - Bluetooth in the distributed sensor network - Mobile networking for smart dust

#### **UNIT 3: CLUSTERING AND SECURITY PROTOCOLS IN WSN**

Topology discovery and clusters in sensor networks - Adaptive clustering with deterministic Cluster - Head selection -Sensor cluster's performance - Power - aware functions -Efficient flooding with passive Clustering -Security protocols in sensor networks - Communication security

#### UNIT 4: NETWORK MANAGEMENT AND OPERATING SYSTEM

Network management requirements - Traditional network management models - Network management design issues – MANNA - other issues related to network management - Operating system design issues – TinyOS – Mate – MagnetOS – MANTIS – OSPM - EYES OS – SenOS – EMERALDS – PicsOS - WSN design issues -Performance modeling - Case study: Simple computation of the System Life Span. WSN Network architecture: typical network architectures-data relaying and aggregation strategies

#### **UNIT 5: TOPOLOGY CONTROL**

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN.Topology Control - Distributed Topology Control- Design Guidelines -Ideal Features of a Topology Control Protocol .The Quality of Information - Logical and Physical Node Degrees ; Location-based Topology Control, Localization- Absolute and relative localization. Neighbor-based Topology Control - The Number of Neighbors for Connectivity - The KNeigh Protocol - The XTC Protocol; Dealing with Node Mobility

# **TEXT BOOKS**

- 1. Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks Technology Protocols and Applications", John Wiley & Sons, Ltd, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley & Sons, Ltd, 2003.
- 3. Paolo Santi, "Topology Control in Wireless Ad Hoc and Sensor Networks", John Wiley & Sons, Ltd, 2005.

- 1. Andreas Willing, "Protocols and Architecture for Wireless Sensor Networks", , John Wiley & Sons Ltd., 2005.
- 2. Ian F. Akyildiz and Mehmet Can, "Wireless Sensor Networks", John Wiley & Sons Ltd., 2010.
- 3. Mohammad Ilyas and Imad Mahgoub, "Handbook of sensor networks: Compact wireless and wired sensing systems", CRC Press LLC, 2005.

ECE18R330	DIGITAL IMAGE PROCESSING		SSING	L	T	P	C			
Prerequisite	Digital Signal Processing (INT18R274)									
Course	Professional Elective									
Category										
Course	Theory	Theory								
Type										
Objective(s)	To introdu	ce the basic	concepts ar	nd methodolog	ies for	analysi	is, mod	leling,		
	synthesis a	nd coding o	of speech and	d music and to	nrov	ide a fo	undatic	on for		
	-	_	<del>-</del>		_					
		developing applications and for further study in the field of digital audio								
	standards at	standards and its techniques								
Course Outco										
CO1	_			ing, image repre		ion				
CO2	Carry vario	us transform	ations on imag	ges and restore	them					
CO3	Enhance the	e images usir	ng various filte	ering technique	s for th	e region	of inter	est		
CO4	Apply vario	us segmenta	tion technique	es on digital ima	ages					
CO5			entations of di							
Mapping of C										
	SO1	SO2	SO3	SO4	SO5		SO6			
CO1	M	M								
CO2		M	Н							
CO3	Н		Н							
	L	M								
CO5	L			M						

# **Unit 1: Image Processing Fundamentals**

Advantages, Applications, Limitations of DIP; Components of an image processing system, Digital image representation, light, hue, saturation and intensity, grey scale and colour images, colour models; Basic relationship between pixels, image sampling and quantization

#### Unit 2: Image Transforms, Image Restoration

Two dimensional orthogonal transforms - DFT, FFT, Walsh, Slant, Hadamard, Haar transform, KLT, DCT, wavelets; Image degradation: Spatial domain, frequency domain; Degradation model for continuous function, continuous impulse function, restoration approaches: unconstrained restoration, constrained restoration, Lagrange multiplier, minimum mean square error filtering, constrained least square filtering, inverse filtering, removal of blur caused by uniform linear motion, Wiener filter, Geometric mean filter, Geometrical transformations

# **Unit 3: Image Enhancement**

Image enhancement in the Spatial Domain, background, basic grey level transformations, histogram processing, enhancement using arithmetic/logic operations, basic of spatial filtering, smoothing spatial filters, sharpening spatial filters, combining spatial enhancement methods, image enhancement in the frequency domain -background, introduction to Fourier transform and frequency domain, smoothing frequency domain filters, sharpening frequency domain filters, homomorphic filters, implementation

# **Unit 4: Image Segmentation**

Detection of discontinuities, edge linking and boundary detection, threshold, region-based segmentation, segmentation by morphological watersheds, use of motion in segmentation

# **Unit 5: Image Representation**

Image representation, Boundary representation using chain codes, Polygonal approximation, signatures, skeleton, patters, recognition based on decision theoretic methods

# **Text Book(s):**

- 1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, 3rd Edition, 2013 **Reference(s):**
- 1. Anil. K. Jain, Fundamentals of Digital Image Processing, PHI, 2001
- 2. William K. Pratt, Digital image processing: PIKS Scientific Inside, Wiley, 4th Edition, 2012

INT18P406	INT18R406 REAL TIME SYSTEMS		L	T	P	C				
		KEAL IIVII	E STSTEMS		3	0	0	3		
Prerequisite	Operating s	ystems. (CSE1	8R273)							
Course	Professiona	l Elective								
Category										
Course	Theory									
Type										
Objective(s)	_	• Explain and apply the fundamental concepts and terminology of real-time								
	system		41. a. C		- <b>f</b> 1 .					
	_	n and address		_	oi reai-	ııme syst	ems.			
	_	ze real-time sy	_	•						
	_	• Design a real-time system.								
		• Identify and assess the relevant literature and research trends of real-time systems								
Course Outco	Course Outcome(s)									
CO1		the basics and	importance o	f real-time sy	stems					
CO2		a high-level an	•			nents spe	ecificat	ions		
CO3	Implement	a high-level de	esign documen	t based on ar	nalysis o	locumen	tation			
CO4	Implement	a test plan base	ed on requiren	nents specific	ation					
CO5	Implement	a validation pl	an based on al	l documentat	ion					
Mapping of O	COs with AB	BET SOs								
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	D6		
CO1	M		Н							
CO2	Н	M	M				N	Л		
CO3	Н						N	Л		
CO4	H									
CO5		Н	M	M			N	Л		
Course Tonic	r(s)				•					

#### **UNIT 1: INTRODUCTION**

Introduction-Issues in real time computing-Architecture of Real time Systems and Embedded Systems – Operating Systems issues – Performance Measures – Estimating Program runtimes.

# UNIT 2: TASK ASSIGNMENT AND SCHEDULING

Classical uniprocessor Scheduling algorithms - uniprocessor Scheduling of IRIS Tasks – Tasks Assignment -Mode charges -Fault tolerant scheduling.

#### UNIT 3: PROGRAMMING LANGUAGES AND TOOLS

Desired language characteristics based on ADA – Data typs – Control Structures – Packages – Exception Handling – Overloading – Multitasking – Timing specification – Task Scheduling – Just-intime Compilation – Runtime support.

# **UNIT 4: REAL TIME DATA BASES**

Basic networking principles – Real time databases –Real time Vs general purpose data base-Transaction processing – Concurrency control – Disk scheduling algorithms – Serialization and Consistency-Data base for hard real time systems.

# UNIT 5: FAULT TOLERANCE, RELIABILITY AND SYNCHRONIZATION

Fault types – Fault detection and containment – Redundancy – Data diversity – Reversal checks – Obtaining parameter values – Reliability models for hardware redundancy – Software error models – Clocks – Fault tolerant synchronization – Synchronization in software.

#### **TEXT BOOK**

1. Krishna C.M., Kang G.Shin, "Real -Time Systems", McGraw-Hill, International Editions, 2010.

- 1. Raymond J.A. Buhr, Donald L. Bailey, "An Introduction To Real Time Systems", Prentice Hall International, 1999.
- 2. Stuart Bennett, "Real Time computer control-An Introduction", PHI, 2004.

INT18R407		INTERNET	OF THINGS		L 3	T 1	P 0	C 4		
Prerequisite	Computer N	letworks (CSE	(18R371)			_ 1	U			
Course	Professional	· · · · · · · · · · · · · · · · · · ·	,							
Category										
Course	Theory									
Type										
Objective(s)	• To le	earn about the	fundamentals	of Internet of	f Thing	S				
	• To b	uild a small lo	w cost embed	ded system u	sing A	rduino/	Raspl	berry Pi		
		quivalent board		•	C		•	•		
	To apply the concept of Internet of Things in real world scenario									
<b>Course Outc</b>	Course Outcome(s)									
CO1	Design a por	rtable IoT usir	ng Arduino/Eq	uivalent boar	ds and	releva	nt prot	tocols		
CO2	Develop we	b services to a	ccess/control	IoT devices						
CO3	Analyze the	various comp	onents of IoT							
CO4	Analyze app	olications of Io	T in real time	scenario						
CO5	Deploy an Io	oT application	and connect t	o the cloud						
Mapping of 0	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	5	SO5		SO6		
CO1		Н	Н	Н						
CO2		Н						Н		
CO3	Н	M	Н							
CO4	Н	M	Н							
CO5		M	Н					Н		

#### UNIT 1: FUNDAMENTALS OF IOT

Introduction-Characteristics - Physical design - Protocols-Logical design - Enabling technologies - IoT levels-Domain specific IoTs - IoT vs M2M

# **UNIT 2: IOT DESIGN METHODOLOGY**

IoT systems management - IoT design methodology-Specifications - Integration and Application Development

#### **UNIT 3: IOT COMPONENTS**

Sensors and activators - Communication modules - Zigbee-RFID-Wi-Fi-Power sources.

#### UNIT 4: BUILDING IOT WITH HARDWARE PLATFORMS

Platform - Arduino/Intel Galileo/Raspberry Pi- Physical device - Interfaces - Programming - APIs/Packages - Web services.

### **UNIT 5: CASE STUDIES AND ADVANCED TOPICS**

Various Real time applications of IoT-Connecting IoT to cloud-Cloud storage for IoT-Data Analytics for IoT- Software & Management Tools for IoT.

#### **TEXT BOOKS**

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.

#### REFERENCES

1. Manoel Carlos Ramon, —Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers, Apress, 2014.

#### **NETWORK MANAGEMENT**

INT10D25(	NE'	TWORK DES	SIGN SECUR	ITY	L	T	P	C	
INT18R356		AND MAN	AGEMENT		3	0	1	3.5	
Prerequisite	Computer N	letworks (CSE	18R371)						
Course	Professional	l Elective							
Category									
Course	Theory with	Practice							
Type									
Objective(s)	• To k	now about Sys	stem Level Se	curity, Vulner	abilitie	s & thre	ats		
		understand the						iques,	
		Authentication functions, Protocols & Tools,							
	• To a								
		ırity, Networl							
		agement	C	C					
<b>Course Outc</b>	•								
CO1	Understand	the basic conc	epts of networ	k design					
CO2	Illustrate the	e process of ne	twork design	_					
CO3	Apply authe	entication tech	niques to prov	ide secure con	nmunic	ation			
CO4	Analyze puł	olic cryptosyst	ems for the qu	ality of securi	ty				
CO5		the concepts o				rvices			
Mapping of C									
CO\SO	SO1	SO2	SO3	SO4	S	O5	SC	)6	
CO1			Н						
CO2	M	Н							
CO3	M			M			Н	[	
CO4	Н	L							
CO5			Н						
Course Tonic	o(c)			•					

#### Course Topic(s)

#### **UNIT 1: INTRODUCTION**

Overview of Design process - Process Components, System description, Service Description, Service, Performance Characteristics, Network Supportability. Requirement Analysis – User requirement, Application requirement, Device requirement, Network requirement.

#### **UNIT 2: DESIGN CONCEPTS**

Design Concepts – Objectives, process, Service provider Evaluation, Network Layout, Trace Traceability, Design Metrics.

#### **UNIT 3: SECURITY PROBLEM AND CRYPTOGRAPHY**

Security attacks – services – and mechanism – Conventional encryption model – Steganography – classical encryption techniques – simplified DES – block Cipher principles – The DES standards – Principles of Public key cryptosystems – RSA algorithm – Key management – Hellman key exchange – Authentication requirements and functions – Authentication codes Hash functions Kerberos. Practical: DES, RSA, Hellman algorithms

#### **UNIT 4: NETWORK SECURITY**

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- Wireless network security-E

Mail security-PGP, S/ MIME, DKIM, IP Security, Intrusion detection – password management. Malicious software– Viruses and related Threats – Virus Counter measures, worms, DDoS attacks– Firewall Design Principles – Trusted Systems. Practical: PGP, S/ MIME, DKIM

#### **UNIT 5: NETWORK MANAGEMENT**

Network management – requirements and systems – Network monitoring architecture – Performance monitoring – Fault monitoring – Account monitoring – Configuration control – Security control – SNMP background and concepts – structure of management information – SNMP protocol – Basic concepts – specifications – Transport level support Groups. Practical: Network Monitoring

#### **TEXT BOOKS**

- 1. "Network Analysis, Architecture, and Design" (3rd Edition), James McCabe, Morgan Kaufmann Publishers, 3rd edition, 2011
- 2. William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, March 2013.
- 3. William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON 1 and 2", Pearson education Asia, 2009.

- 1. Charles P. Pfleeger, "Security in Computing", Prentice Hall, 3rd Edition 2003.
- 2. Bruce Schneier, "Applied Cryptography", JohnWiley & Sons Inc, 2nd edition, 2007.
- 3. Mani Subramanian, "Network management Principle and practice", Pearson education India, 2010.

INT18R308	IN	NFORMATIC	ON SECURIT	Y	L 3	T 1	P 0	<u>C</u>		
Prerequisite	Nil						<u> </u>	-		
Course Category	Professiona	l Elective								
Course Type	Theory									
Objective(s)	syste • Pred	<ul> <li>Apply the basic security algorithms and policies required by computing system.</li> <li>Predict the vulnerabilities across any computing system and hence be able to design a security solution for any computing system.</li> </ul>								
<b>Course Outc</b>	ome(s)									
CO1		To introduce the concepts and models of security in computing.								
CO2		To design and implement symmetric and asymmetric cryptosystems.								
CO3	To explain to application	the security state. level.	ndards follow	ed at the nety	vork le	vel and a	t the			
CO4		the level of se handle the ris	•	ed by an orga	anizatio	on and the	e count	er		
CO5	To know ab	out the softwa	re security dev	elopment me	odel.					
Mapping of C	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4		SO5	SC	)6		
CO1			Н	M						
CO2	Н			M			F	I		
CO3	M		M	Н						
CO4		M	L	M						
CO5			Н	M		_				

# **UNIT 1: SECURITY - AN OVERVIEW**

Basics of Security - CIA Triad - Threats, Attacks and Controls - Security Models- Bell-LaPadula model - Biba Integrity model - Chinese Wall model - Malicious Logic - Viruses, Worms, Logic Bombs - Basics of Cryptography - Mathematics for Cryptography - Modulo Arithmetic - Euclidean and extended Euclidean Theorem - Chinese Remainder Theorem - Euler and Fermat theorem - Classical Cryptosystems - Substitution and Transposition.

# **UNIT 2: ADVANCED CRYPTOGRAPHY**

DES and AES - Public Key Cryptography - RSA and ElGamal algorithms - Authentication and Key Exchange - Biometric authentication - Diffie Hellman and Needem Schroeder algorithms - Elliptic Curve Cryptosystems - Digital Signatures - Message Digest - Certificates - Directories and Revocation of keys and certificates.

#### **UNIT 3: SECURITY STANDARDS**

Public Key Infrastructure - Kerberos - X.509 - IPSec - Virtual Private Networks - E-Mail Security - PGP and PEM - Web Security - Secured DNS - SSL, TLS and SET - CoBIT Framework - Compliances - Credit Card Applications - GLBA.

#### **UNIT 4: SECURITY PRACTICES**

Vulnerability Analysis - Flaw Hypothesis Methodology, NRL taxonomy and Aslam's model - Auditing - Anatomy of an Auditing System - Design of Auditing Systems - Posteriori Design - Auditing mechanisms - Risk Analysis and Management - Disaster Recovery Planning/Incident Response Planning.

#### **UNIT 5: SECURE DEVELOPMENT**

Secure Coding - OWASP/SANS Top Vulnerabilities - Buffer Overflows - Incomplete mediation - XSS - Anti Cross Site Scripting Libraries - Canonical Data Format - Command Injection - Redirection - Inference — Application Controls - Secured Software Development Life Cycle - Evaluation of Security Systems- Case Studies-Legal and Ethical Issues- Cybercrime and computer crime - Intellectual property-Copyright, patent, trade secret - Hacking and Intrusion privacy-Identity theft.

#### **TEXT BOOKS:**

- 1. Charles Pfleeger, Shari Lawrence Pfleeger, Devin N Paul, —Security in Computing I, Pearson, 2007.
- 2. William Stallings, —Cryptography and Network Security Principles and Practices^{II}, Pearson Education, Sixth Edition, 2013.

- 1. Wade Trappe, Lawrence C Washington, —Introduction to Cryptography with Coding and Theory, Second Edition, Pearson, 2007.
- 2. Wenbo Mao, —Modern Cryptography Theory and Practicell, Pearson, 2004.
- 4. Behrouz A Forouzan and Debdeep Mukhopadhyay, "Cryptography and Network Security", Tata Mc Graw Hill Ltd. 2014.

INT18R357		MOBILE N	ETWORKS		L	T	P	C		
					3	0	1	3.5		
Prerequisite	Computer N	letworks (CSE	(18R371)							
Course	Professional	rofessional Elective								
Category										
Course	Theory with	heory with Practice								
Type										
Objective(s)	This Course	e Describes al	bout routing	mechanisms	for bot	th Adhoo	e and S	Sensor		
	Networks									
<b>Course Outco</b>										
CO1	Understand	the basics of r	adio access ar	nd networks						
CO2	Learn to sin	Learn to simulate wireless networks and analyze the simulation results								
CO3	Describe the	e concepts of	ad hoc networ	ks, design an	d imple	ementatio	n issue	s, and		
	available so	lutions			-					
CO4	Apply know	ledge of wirel	ess sensor net	works to vari	ous ap	plication	areas			
CO5	Demonstrate	e advanced kn	owledge of ne	tworking and	wirele	ss netwo	rking			
Mapping of C	•									
CO\SO	SO1	SO2	SO3	SO4		SO5	SC	O6		
CO1			Н							
CO2	Н	H M								
CO3	M	Н					N	Л		
CO4		Н								
CO5	Н	M				•				

#### **UNIT 1: MULTIPLE RADIO ACCESS**

Medium Access Alternatives: Fixed-Assignment for Voice Oriented Networks Random Access for Data Oriented Networks, Handoff and Roaming Support, Security and Privacy.

# UNIT 2: WIRELESS BROADBAND NETWORKS TECHNOLOGY & PLATFORMS

Wireless broadband fundamentals and Fixed Wireless Broadband Systems - Platforms-Enhanced Copper- Fibre Optic and HFC - 3G Cellular- Satellites - ATM and Relay Technologies

# **UNIT 3: AD HOC NETWORKS**

Characteristics and Applications of Ad hoc Networks - Routing - Need for routing and routing classifications - Table Driven Routing Protocols - Source Initiated On-Demand Routing Protocols - Hybrid Protocols - Zone Routing - Fisheye Routing - LANMAR for MANET with group mobility - Location Added Routing, Distance Routing Effects - Micro discovery and Power Aware Routing. Practical: Routing Protocols

#### **UNIT 4: SENSOR NETWORKS**

Wireless Sensor Networks - DARPA Efforts -Classification - Fundamentals of MAC - Flat routing - Directed Diffusion-SPIN - COGUR - Hierarchical Routing - Cluster base routing - Scalable Coordination - LEACH - TEEN - APTEEN and Adapting to the dynamic nature of Wireless Sensor Networks. Practical: MAC protocols

#### **UNIT 5: ADVANCED WIRELESS NETWORKS**

Wireless. Broadband Network Applications - Teleservices Model and Adaptive QoS Parameters - Modelling of Wireless - Broadband Applications - Multi component Model - Residential High speed Internet Wireless Broadband Satellite Systems - Next Generation Wireless Broadband Networks - 3G, Harmonized 3G, 3G CDMA, Smart Phones and 3G Evolution. Practical :Multi component models

#### **TEXT BOOK**

1. John R. Vacca, "Wireless Broadband Networks Handbook 3G, LMDS and Wireless Internet", Tata McGraw-Hill, 2001.

- 1. Agrawal D.P., and Qing-An zeng, "Introduction to Wireless and Mobile Systems", Thomson Learning, 3rd Edition, 2010.
- 2. Martyn Mallick, "Mobile and Wireless Design Essentials, Wiley publication, 2003.
- 3. Kavesh Pahlavan and Prashant Krishnamurty, "Principles of Wireless Networks A unified Approach", Prentice Hall PTR, 2002

INT18R309	W		PPLICATION	N	L	T	P	C		
		PROT			3	0	0	3		
Prerequisite	Computer N	etworks (CSE	(18R371)							
Course	Professional	Elective								
Category										
Course	Theory	Гћеогу								
Type										
Objective(s)	• To lear	n the basic co	ncepts of mob	ile internet						
	• To intr	oduce the web	technologies	for developing	g simp	le web a	pplicati	ions.		
	• To mal	ce students to	understand al	out services	of WA	AP and to	o learn	WAP		
	prograi	nming langua	ges used for W	AP service in	nplem	entation.				
	To teach	h the concepts	s for deploying	g WAP service	es					
	<ul> <li>To und</li> </ul>	erstand about	wireless telepl	nony applicati	ons an	d its enh	ancem	ents		
Course Outco	ome(s)									
CO1	Understand	the basic cond	cepts of mobile	e internet, ser	vices	and serv	ice pro	viders		
		of mobile internet.								
CO2	Learn about	the web tec	hnologies use	d for develop	ping v	veb appl	lication	s and		
	components									
CO3			services and t	to learn progr	ammiı	ng langu	age use	ed for		
		WAP services								
CO4		how WAP so	ervices are li	nked with ir	iternet	and at	out in	ternet		
	protocols.									
CO5			telephony ap	plications, c	lesign	consid	erations	s for		
	applications									
Mapping of C					1					
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	06		
CO1	_		Н	Н						
CO2	M		Н							
CO3	Н	M	L	M						
CO4	Н	M	L							
CO5		Н					N	1		

# **UNIT 1: MOBILE INTERNET**

Introduction, Mobile Data – connectivity – Key services for mobile internet – Mobile Internet access and application service provides - Content providers and Developer.

# **UNIT 2: MOBILE INTERNET STANDARD**

Current Web technologies for wireless application - origin and overview of WAP components of wap standard - Network Infrastructure services supporting Wap clients Design Principles Tools and software editors and emulators.

#### **UNIT 3: IMPLEMENTING WAP SERVICES**

WML Basic and Document model - content generation - Binary WML - enhanced WML - WML script - rules of script standard libraries - user interface design guidelines.

#### **UNIT 4: ADVANCED WAP**

Tailoring content to client - Techniques using HTTP 1.1 - WAP Push - Push Access Protocol - Push Technology - MIME media types for push messages - Proxy gateway; Data base driven

WAP - ASP and WAP - Object model - Activex data objects (ADO) - End-to-End WAP services - Security domains - linking WAP and internet.

#### **UNIT 5: WIRELESS TELEPHONY APPLICATIONS**

WTA architecture - client Framework - Server and security - Design considerations Application creation Toolbox - WTA enhancements - Technology - Bluetooth and voice XML - Telematics inter connectivity.

# **TEXT BOOK**

1. Sandeep Signal et al, "Writing Applications for Mobile Internet", Pearson Education, 2001.

#### **REFERENCE**

1. "Wireless Protocols - A beginner's Guide" BulBrook, Tata McGraw Hill PCL, 2001.

INT18R408	]	HIGH PERFO			L	T	P	C		
11/11/01/100		NETWO	DRKS		3	1	0	4		
Prerequisite	Computer N	etworks (CSE	18R371)							
Course	Professional	Elective								
Category										
Course	Theory	heory								
Type										
Objective(s)		litate the stude								
	-	the various ty	•							
	• To lear	n about netwo	rk security in 1	many layers	and net	work ma	ınagem	ent		
	To stuce	ly the types of	VPN and tunn	eling protoc	ols for	security.				
	To dev	elop a compre	hensive under	standing of n	nultime	dia netw	orking	•		
Course Outco	Course Outcome(s)									
CO1	Implement d	lifferent operat	tions in comm	unication net	tworks					
CO2	Understand	the flow contro	ol and congest	ion control d	luring p	acket tra	nsmiss	ion		
CO3	Understand	switching in A	TM and Fram	e Relay netw	vorks					
CO4	Study about	the differnet q	ueuing metho	ds						
CO5	Know the di	fferent protoco	ols towards Qu	ality of Serv	rice					
Mapping of (	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4		SO5	S	SO6		
CO1		Н		M				M		
CO2	M		Н							
CO3	M		Н							
CO4			Н							
CO5	M			M						
Course Tonic	2(2)				•					

#### **UNIT 1: HIGH SPEED NETWORKS**

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANs: applications, requirements – Architecture of 802.11

# **UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT**

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

#### **UNIT 3: TCP AND ATM CONGESTION CONTROL**

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management.

#### **UNIT 4: INTEGRATED AND DIFFERENTIATED SERVICES**

Integrated Services Architecture - Approach, Components, Services- Queuing Discipline, FQ,

PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services

# **UNIT 5: PROTOCOLS FOR QOS SUPPORT**

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

#### TEXT BOOK

1. William Stallings, "High Speed Networks And Internet", Pearson Education, Second Edition, 2010.

- 1. Warland & Pravin Varaiya, "High Performance Communication Networks", Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
- 2. Irvan Pepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN Architecture", Cisco Press, Volume 1 and 2, 2003.

INT18R455	CRYP	TOGRAPHY	AND NETW	ORK	L	T	P	C	
IN116K455		SECU	RITY		3	0	1	3.5	
Prerequisite	Computer No	etworks (CSE1	8R371)						
Course	Professional	Elective							
Category									
Course	Theory with	Theory with Practice							
Type	-								
Objective(s)	To develop	develop a fundamental understanding of Cryptography and network security							
	proper practi	ces, policies, te	echnologies and	d standards.					
Course Outco	ome(s)	(s)							
CO1	Explain the f	xplain the foundations of cryptography and network security.							
CO2	Identify com	Identify common security vulnerability attacks in different networking environment							
CO3	Evaluate the	risks and threa	ts to digital co	mmunication	system				
CO4	Demonstrate	the detailed kr	nowledge of the	e role of encr	yption to	protect	the data		
CO5	Explain the f	undamental co	ncepts of diffe	rent digital si	gnature	schemes			
CO6	Identify the a	appropriate cry	ptographic sch	neme and sec	urity me	chanism	for diff	erent	
	computing en	nvironment and	l information s	ystems					
Mapping of (	COs with ABE	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	S	O5	SO	5	
CO1	Н		Н						
CO2			Н						
CO3	M	Н					Н		
CO4	Н		Н	Н					
CO5			Н	M					

#### **UNIT 1: INTRODUCTION**

OSI Security Architecture - Classical Encryption techniques - Block Cipher Principles -

Data Encryption Standard- Basic concepts in number theory and finite fields – Block Cipher Design Principles and Modes of Operation - Evaluation criteria for AES – AES Cipher – Triple DES. Practical: DES

#### **UNIT 2: PUBLIC KEY CRYPTOGRAPHY**

Number Theory- Public Key Cryptography and RSA-Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and Cryptography - Confidentiality using Symmetric Encryption and Asymmetric Encryption. Practical: RSA, Diffie Hellman

#### UNIT 3: CRYPTOGRAPHIC AND DATA INTEGRITY ALGORITHMS

Applications of cryptographic hash functions- Simple Hash Functions- Requirements and security-Secured Hash Algorithm- Message Authentication requirements and functions — Message Authentication Codes — Security of MACs — HMAC- Digital Signatures — ElGamal Digital signature scheme- Schnorr Digital signature scheme - Digital Signature Standard. Practical: Secured Hash Algorithm

#### **UNIT 4: NETWORK AND INTERNET SECURITY**

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- Wireless network security-E Mail security-PGP, S/ MIME, DKIM, IP Security. Practical: PGP

#### **UNIT 5: SYSTEM LEVEL SECURITY**

Intrusion detection – password management. Malicious software– Viruses and related Threats –

Virus Counter measures , worms, DDoS attacks– Firewall Design Principles – Trusted Systems. Practical: password management

# **TEXT BOOK**

1. William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, March 2013.

- 1. Bruce Schneier, "Applied Cryptography", second edition, John Wiley & Sons, New York, 2007.
- 2. Chris Brenton, "Mastering Network Security", BPB Publication, New Delhi, 2002.
- 3. Behrouz A Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

# **COMPUTING TECHNIQUES**

INT18R358		DISTRIBUTE	D SYSTEMS	5	L	T	P	C	
11110K350					3	0	1	3.5	
Prerequisite	Computer 2	Architecture and	d Organization	(CSE18R174	4)				
Course	Program C	Core							
Category									
Course	Theory wi	Theory with Practice							
Type									
Objective(s)		expose students					•	·•	
		introduce conce	-		-				
		focus on perfori	mance and fleat	xibility issues	related	l to syste	ems des	sign	
		cisions.							
		expose students	to current lite	rature in distr	ibuted	systems	•		
Course Outco									
CO1	Understand	d various models	s of distributed	d systems					
CO2	Aware of d	listributed file sy	ystems						
CO3	Identify the	e needs of distri	buted systems	implementati	on				
CO4	Construct v	work flows as su	ıch in distribu	ted systems					
CO5	Design dist	tributed systems	3						
Mapping of (	COs with Al	BET SOs							
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	)6	
CO1	M		M						
CO2		H							
CO3	M	M H M							
CO4	Н	H H H							
CO5	Н	Н		M			N	1	

# Course Topic(s)

#### **UNIT 1: INTRODUCTION**

Characterization of Distributed Systems- Examples of distributed systems - Challenges-System Models-Physical models-Architectural models - Fundamental models - Introduction to interprocess communications-External data representation and marshalling- Multicast communication-Network virtualization -Overlay networks - Practical : MPI and World Wide Web, Remote Method Invocation program

#### UNIT 2: DISTRIBUTED OBJECTS AND FILE SYSTEM

Introduction - Distributed objects - From objects to components- Case studies: Enterprise JavaBeans and Fractal - Introduction to DFS - File service architecture - Sun network file system - The Andrew File System- Introduction to Name Services- Name services and DNS - Directory and directory services Practical: The Global Name Service, The X.500 Directory

Service.

#### **UNIT 3: DISTRIBUTED OPERATING SYSTEM SUPPORT**

The operating system layer – Protection - Process and threads - Communication and invocation - Operating system architecture - Virtualization at the operating system level - Introduction to time and global states - Clocks, Events and Process states - Synchronizing physical clocks - Logical time and logical Clocks - Global states - Distributed debugging. Practical: CORBA using Java program, Java deadlock program

# UNIT 4: TRANSACTION AND CONCURRENCY CONTROL – DISTRIBUTED TRANSACTIONS

Transactions – Nested transaction – Locks - Optimistic concurrency control - Timestamp ordering - Comparison of methods for concurrency control - Introduction to distributed transactions - Flat and nested distributed transactions - Atomic commit protocols - Concurrency control in distributed transactions - Distributed deadlocks - Transaction recovery. Practical: Concurrency control using DBMS

# UNIT 5: DISTRIBUTED SYSTEM DESIGN AND DISTRIBUTED MULTIMEDIA SYSTEMS

Introducing the case study: Google- Overall architecture and design philosophy- Underlying communication paradigms- Data storage and coordination services- Distributed computation services- Introduction to distributed multimedia systems- Characteristics of multimedia data - Quality of service management - Resource management- Stream adaptation- Practical: Tiger, BitTorrent and End System Multicast.

#### **TEXT BOOK**

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Addison Wesley, May 2011.

- $1. \quad A.S. Tanenbaum, \quad M. Van \quad Steen, \quad \text{``Distributed systems: principles and paradigms'',} \\ \quad Pearson \ Prentice \ Hall, \ 3rd \ Edition, \ 2007.$
- 2. Mukesh Singhal, "Advanced Concepts In Operating Systems", McGraw-Hill Series in Computer Science, Ohio State University, Columbus 2001.

INT18R456	EODMA	I I ANCHA	OE AND AUT		L	T	P	C
	FORMA	L LANGUAC	GE AND AUT	OMATA	3	0	1	3.5
Prerequisite	Programmin	ng for Problem	Solving (CSE	E18R171)				
Course	Professional	Elective						
Category								
Course	Theory with	Theory with Practice						
Type								
Objective(s)	• To in	ntroduce stude	ents about the	mathematical	founda	tions of	comput	tation
	including at	utomata theor	y, the theory	of formal lan	guages	and gr	ammars	s, the
	notions of a	lgorithm, decid	dability, comp	lexity, and cor	nputab	ility,		
	• To	enhance/deve	lop students'	ability to	unders	stand a	ind co	nduct
	mathematica	al proofs for co	omputation and	d algorithms.				
<b>Course Outc</b>	Course Outcome(s)							
CO1	Design the	Finite Aut	tomata, Dete	rministic Fin	ite A	utomata	and	Non
	Determinist	ic Finite Autor	mata					
CO2	Understand	the Regular la	nguages and e	xpressions to	given a	probler	n	
CO3			ammar (CFG)			ıming la	nguage	s and
	evaluate the	equivalence o	f push down a	utomata and C	CFG.			
CO4			e for different					
CO5			problem in reg	ular expressio	n and T	Γuring n	nachine	
	COs with AB	ET SOs						
CO\SO	SO1	SO2	SO3	SO4	S	O5	SO	16
CO1		Н	M					
CO2	Н							
CO3			M	M	]	M	Н	ĺ
CO4		Н						
CO5	Н		M					

#### **UNIT 1: AUTOMATA**

Introduction to formal proof – Additional Forms of Proof – Inductive Proofs –Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon Transitions.

#### **UNIT 2: REGULAR EXPRESSIONS AND LANGUAGES**

Regular Expression –Finite Automata and Regular Expressions – Properties of Regular languages: Pumping Lemma for Regular Languages and Applications – Closure Properties of Regular Languages-Equivalence and Minimization of Automata

# UNIT 3: CONTEXT-FREE GRAMMAR AND PUSH DOWN AUTOMATA

Context-Free Grammar (CFG) – Application- Parse Trees – Ambiguity in Grammars and Languages – Pushdown Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG - Deterministic Pushdown Automata

#### **UNIT 4: PROPERTIES OF CFL AND TURING MACHINE**

Normal Forms for CFG – Pumping Lemma for CFL –Applications Properties of CFL –Turing Machines – Programming Techniques for TM: Multiple Stacks, Subroutines-Extensions to the Basic Turing Machine

#### **UNIT 5: UNDECIDABILITY**

A language that is not Recursively Enumerable (RE) – An Undecidable problem that is RE – Undecidable Problems about Turing Machine – Post_s Correspondence Problem - The classes P and NP - NP complete-Complements of Languages in NP

#### PRACTICE COMPONENTS

- . Create the Deterministic Finite Automata using JFLAP simulator
- 2. Create the Non-Deterministic Finite Automata using JFLAP simulator
- 3. Construct a regular expression using JFLAP. Use Convert→Convert FA to RE.
- 4. Construct a Grammar using JFLAP.
- 5. Convert regular expressions to FA
- 6. Create Regular Grammar and convert to Finite Automaton
- 7. Create a PDA that accepts strings that contains the language  $L = \{axcb2x \mid where \ x \ge 0\}$  using the alphabet  $\Sigma = \{a,b,c\}$ .
- 8. Create each PDA with at least five test results with the following languages over alphabet:  $\Box = \{a,b\}$
- a)  $L = \{anbn \mid where n > 0\}$
- b)  $L = \{anbncn \mid where n > 0\}$
- 9. Construct PDA for any given grammar.

#### **TEXT BOOK**

**1.** Hopcroft J.E,Motwani R and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Third Edition, 2006.

#### **REFERENCE BOOKS**

- **1.** Martin J, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003
- 2. Lewis H. R and Papadimitriou C.H, "Elements of The theory of Computation", United States Edition, 1997.

INT18R409		COMPUTER	FORENSIC	S	L 3	T 0	P 0	C 3
Prerequisite	Computer N	etworks (CSE	18R371)					
Course Category	Professional	Elective						
Course Type	Theory							
Objective(s)	<ul> <li>Describe the origin of computer forensics and the relationship between law enforcement and industry.</li> <li>Describe electronic evidence and the computing investigation process</li> <li>Execute an investigation strategies, FAT file system, manual and automated analysis tools, working as an expert witness.</li> <li>Demonstrate an understanding of a code of ethics and conduct related to the information security and digital forensics professions.</li> <li>Identify standards of professionalism an ethical behavior for information security and digital forensics professional and apply these standard successfully to ethical dilemmas</li> </ul>							
Course Outco	ome(s)							
CO1	Understand world.	of the role of	f computer fo	rensics in bo	th the	business	s and pr	rivate
CO2	Identify son	ne of the currer	nt techniques a	and tools for fo	orensic	examin	ations.	
CO3	Describe and computing p	d identify basi bractitioner.	c principles of	f good profess	ional p	ractice	for a for	ensic
CO4	Apply some	forensic tools	in different si	tuations.				
CO5		e an understan n technically a		related to pri	vacy a	nd deter	mine ho	ow to
Mapping of C	COs with AB	ET SOs						
CO\SO	SO1	SO2	SO3	SO4	S	O5	SO	6
CO1			Н					
CO2	Н		Н					
CO3								
CO4	Н		M	M			Н	
CO5	Н	M						

# UNIT 1: NETWORK LAYER SECURITY &TRANSPORT LAYER SECURITY

IPSec Protocol - IP Authentication Header - IP ESP - Key Management Protocol for IPSec.Transport layer Security: SSL protocol, Cryptographic Computations – TLS Protocol.

# **UNIT 2: E-MAIL SECURITY & FIREWALLS**

 $PGP-S/MIME-Internet\ Firewalls\ for\ Trusted\ System:\ Roles\ of\ Firewalls-Firewall\ related\ terminology-Types\ of\ Firewalls-Firewall\ designs-SET\ for\ E-Commerce\ Transactions.$ 

#### **UNIT 3: FORENSICS METHODS**

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding

Computer Investigation – Data Acquisition.

# **UNIT 4: EVIDENCE COLLECTION AND FORENSICS TOOLS**

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

#### **UNIT 5: ANALYSIS AND VALIDATION**

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics.

# **TEXT BOOKS**

- 1. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 2. Nelson, Phillips, Enfinger, Steuart, "Computer Forensics and Investigations", Cengage Learning, India Edition, 2008.

- 1. John R. Vacca, "Computer Forensics", Cengage Learning, 2005
- 2. Richard E.Smith, "Internet Cryptography", 3rd Edition Pearson Education, 2008.
- 3. Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", 3rd Edition, Prentice Hall, 2013.

INT18R410		CLOUD CO	MPUTING	-	L	T	P	C		
Prerequisite	Computer N	letworks (CSE	110D271)		3	I	0	4		
-	•		10K3/1)							
Course	Professional	Elective								
Category										
Course	Theory	heory								
Type										
Objective(s)	To imp	art fundament	tal concepts in	the area of cl	oud co	mputing				
	-	To impart fundamental concepts in the area of croad comparing.								
<b>Course Outc</b>	Course Outcome(s)									
CO1	Understandi	ng the syste	ems, protocol	s and mech	anism	s to su	pport	cloud		
	computing	Inderstanding the systems, protocols and mechanisms to support cloud omputing								
CO2	Develop app	olications for c	loud computin	ng						
CO3	Understandi	ng the hardwa	re necessary f	or cloud com	outing					
CO4	Design and	implement a n	ovel cloud cor	nputing appli	cation					
CO5	Knowledge	in various Clo	ud vendors an	d their produc	ets					
Mapping of	COs with AB	ET SOs								
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	06		
CO1			Н							
CO2				M		M	H	H		
CO3	M	M L H								
CO4		H M M H								
CO5	M		Н							
C T	Course Toric(s)									

# **UNIT 1: INTRODUCTION**

Overview – applications - intranet and cloud - examples: Amazon, Google, Microsoft, IBM – Benefits and Limitations of cloud computing - Google app engine – EMC - NETAPP - Microsoft Azure - Amazon(EC2, S3,SQS) - open stack -cloud computing services

# **UNIT 2: HARDWARE AND ARCHITECTURE**

Clients-Security-Network-Services. Accessing the cloud: Platforms-web applications-web APIs-web browsers. Cloud storage: overview-providers. Standards: application-client-infrastructure-service.

#### **UNIT 3: SOFTWARE AS SERVICE**

Overview- Driving forces-company offerings-industries. Software plus services: Overview-mobile device integration-providers-Microsoft Online.

#### **UNIT 4: DEVELOPING APPLICATIONS**

Google – Microsoft – IntuitQuickBase - Cast Iron Cloud - Bungee Connect – Development (Appengine, Azure, open stack etc.) - trouble shooting and application management.

#### **UNIT 5: LOCAL CLOUDS AND THIN CLIENTS**

Virtualization-server solutions-thin clients. Cloud Migration: cloud services for individuals-enterprise cloud-methods for migration-analyzing cloud services.

#### **TEXT BOOKS**

- 1. Anthony T.Velte, Toby Velte, "Cloud Computing a practical approach", Mcgraw Hill, 2010.
- 2. M.S.V.Janakiram, "Demystifying the Cloud An introduction to Cloud Computing",

version 1.1, 2010.

# **REFERENCE BOOKS**

- 1. Mark C. Chu-Carroll, "Code in the Cloud- Programming Google App Engine", The Pragmatic Bookshelf Raleigh, North Carolina Dallas, Texas, 2011.
- 2. Breslin "Cloud Computing: Principles and Paradigms", Wiley Press, New York, USA, 2008.

INT18R411		GREEN CO	MPUTING		L	T	P	C			
					3	0	0	3			
Prerequisite	Computer Networks (CSE18R371)										
Course	Professiona	l Elective									
Category											
Course	Theory										
Type											
Objective(s)		This course covers fundamental principles of energy management faced by									
		f hardware, op									
		nagement option									
		nard drives, me									
		he operating sy						_			
		Finally we w		_							
		management is done at multiple layers from individual components in the system									
	_	to shutting down entries subset of machines. We will also discuss energy									
		and delivery ar	nd well as cool	ing issues in l	arge d	ata cente	ers				
Course Outco											
CO1		the concepts of									
CO2		green (power	,	_	1			_			
	-	uch as CPU,	•			cutting	edge de	esigns			
		mponents incl									
CO3		ic understandi									
		em (especially		//	cludin	g netwo	orks, V	/irtual			
		M) manageme									
CO4	Use a range	of tools to hel	p monitor and	design green	systen	ns					
CO5	Analyze the	various tools	to greening the	e organization	Į.						
Mapping of C	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	D6			
CO1			Н	L							
CO2	Н	M									
CO3	Н	M				L					
CO4			Н								
CO5	Н	M									
Course Tonic	-(-)			ı							

# UNIT 1:ION

Inroduction - Need for Green Computing - Green computing Background - Understanding the World of Green IT: Win-Win-Winning with Green IT - Making the Business Case of Green IT - Green Journeys in Action.

#### **UNIT 2: GETTING A RUNNING START**

Getting to know the Standards and Metrics – Assessing your current Energy use and

Needs – Go Green in 12 months: Putting Together a plan – Techniques for managing Power consumption

# **UNIT 3: GREENING THE DATA CENTER**

Laying the foundation for green data management – maximizing data center efficiency – Bottom up Electrical Efficiency Improvement - Racking up green servers – cooling your data center – Building a Green Storage System – Grooming the Network for green – Using Virtualization –

computer power using Benchmarking – Evaluation of Power Benchmarks

#### **UNIT 4: GREENING THE OFFICE**

Moving to Green Screens and Computing Machines – Reducing Desktop Energy Waste – Pursuing the Less-Paper Office – Evaluation Green Gadgetry – Experimental methodology

#### **UNIT 5: GREENING THE ORGANIZATION**

Greening the Facility – e-Waste Not, e-Want Not – Virtually There: Collobration Technologies for a Greener World - Ten Organizations that can help with Green IT objectives – Ten creative computer Recycling Tips – Ten tips for a Green Home Office.

#### **TEXT BOOK**

1. Carol Baroudi, Jeffery Hill, Arnold Reinhold, Jhana Senxian, "Green IT for dummies", Wiley Publishing Inc, 2009.

#### REFERENCE

1. Mujtaba Talebi, "Computer Power Consumption benchmarking for green computing", ceangage learning, April 2008.

INT18R412	SO	CIAL NETWORK ANALYSIS			L	T	P	C			
D ::	D	Data atmustures and algorithms (INIT18D271)									
Prerequisite		Data structures and algorithms (INT18R271)									
Course	Professiona	Professional Elective									
Category											
Course Type	Theory	Theory									
Objective(s)	netv	<ul> <li>To gain knowledge about social networks, its structure and social network data sources</li> <li>To learn the analysis and mining techniques for Social networks</li> </ul>									
		<ul> <li>To study about the semantic technologies for social network analysis</li> </ul>									
		<ul> <li>To study about the semantic technologies for social network analysis</li> <li>To gain knowledge on Visualization of Social networks and its</li> </ul>									
		applications									
Canada Ontas		ilcations									
Course Outco	_ ` '	4 1 1 1	, . c	. 1 337 1							
CO1			opments in So		1						
CO2			ng techniques i		works						
CO3			wledge for Ser								
CO4	Design ext	raction and mi	ning tools for	Social networ	rks						
CO5	Develop pe	ersonalized vis	ualization for	Social networ	rks						
Mapping of C	Os with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	5	SO5	S	O6			
CO1			Н	M							
CO2	M		M	M							
CO3		M					N	M			
CO4		Н									
CO5				M		M	]	Н			

#### **UNIT 1: SOCIAL NETWORK ANALYSIS**

Definition and Features - The Development of Social Network Analysis - Basic graph theoretical Concepts of Social Network Analysis - ties, density, path, length, distance, betweenness, centrality, clique - Electronic sources for network analysis - Electronic discussion networks, Blogs and online communities, Web-based networks.

#### **UNIT 2: SOCIAL NETWORK PROFILES**

Introduction – types of commercial social network profiles (CSNP) - Quantitative and Qualitative Analysis of CSNPs – Analysis of social networks extracted from log files - Data Mining Methods Related to SNA and Log Mining - Clustering Techniques – Case study.

# UNIT 3: SEMANTIC TECHNOLOGY FOR SOCIAL NETWORK ANALYSIS

Introduction to ontology-based knowledge representation - - Ontology languages for the Semantic Web - RDF and OWL - Modeling Social network data - State-of-the-art in network data representation, Ontological representation of social individuals, Ontological representation of social relationships.

#### **UNIT 4: SOCIAL NETWORK MINING**

Detecting and discovering Communities in Social Networks - Definition of Community - Evaluating Communities - Methods for Community Detection – divisive, spectral and modularity optimization algorithms - Applications of Community Mining Algorithms - Overview of tools for Detecting Communities - Understanding and Predicting Human Behavior for Social

#### Communities.

#### UNIT 5: VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

Visualization of Social Networks - Node-Edge Diagrams - Random Layout - Force-Directed Layout - Tree Layout - Matrix Representations - Hybrid Representations - Visualizing Online Social Networks - Applications - Covert Networks - Community Welfare - Collaboration Networks - Co-Citation Networks.

#### **TEXT BOOKS**

- 1. Peter Mika, "Social Networks and the Semantic Web", Springer, 1st edition 2007.
- 2. BorkoFurht, "Handbook of Social Network Technologies and Applications", Springer, 1st edition, 2010.

- 1. GuandongXu ,Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and applications", Springer, 1st edition, 2011.
- 2. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, "Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modelling", IGI Global snippet, 2009.
- 3. John G. Breslin, Alexandre Passant and Stefan Decker, "The Social Semantic Web", Springer, 2009.

					L	T	P	C				
INT18R413	INFORMATION RETRIEVAL					0	0	2				
		TECHNIQUES					0	3				
Prerequisite	Database N	Database Management Systems (INT18R371)										
Course	Professiona	Professional Elective										
Category												
Course Type	Theory											
Objective(s)	• To	To learn the concepts behind IR										
	• To	understand the	operation of	web search								
	• To	To learn the algorithms related to text classification, indexing and										
	sea	searching										
Course Outco	ome(s)											
CO1		an open source				lore its	capabili	ities				
CO2	Know the	various modeli	ng and evalua	tion techniqu	es							
CO3	Learn to re similarity	present docum	ents in differe	nt ways and	discuss	its effe	ect on					
CO4	-	ulations and or	n search									
CO5	Design and	l implement an	innovative fe	ature in a sea	rch eng	gine						
Mapping of C												
CO\SO	SO1	SO2	SO3	SO4	5	SO5	S	О6				
CO1	Н		Н									
CO2			Н	M		Н	]	L				
CO3	Н		Н									
CO4		M										
CO5		Н		M		M		Н				

#### **UNIT 1: INTRODUCTION**

Information Retrieval – Early Developments – The IR Problem – The User's Task – Information versus Data Retrieval - The IR System – The Software Architecture of the IR System – The Retrieval and Ranking Processes - The Web – The e-Publishing Era – How the web changed Search – Practical Issues on the Web – How People Search – Search Interfaces Today – Visualization in Search Interfaces.

#### **UNIT 2: MODELING AND RETRIEVAL EVALUATION**

IR models – Classic Information Retrieval – Alternative Set Theoretic Models – Alternative Algebraic Models – Alternative Probabilistic Models – Other Models – Hypertext Models – Web based Models – Retrieval Evaluation – Cranfield Paradigm – Retrieval Metrics – Reference Collections – User-based Evaluation – Relevance Feedback and Query Expansion – Explicit Relevance Feedback – Clicks – Implicit Feedback Through Local Analysis – Global Analysis – Documents: Languages & Properties – Queries: Languages & Properties.

# UNIT 3: TEXT CLASSIFICATION, INDEXING AND SEARCHING

A Characterization of Text Classification – Unsupervised Algorithms – Supervised Algorithms – Feature Selection or Dimensionality Reduction – Evaluation metrics – Organizing the classes – Indexing and Searching – Inverted Indexes – Signature Files – Suffix Trees & Suffix Arrays – Sequential Searching – Multi-dimensional Indexing.

#### UNIT 4: WEB RETRIEVAL AND WEB CRAWLING

The Web - Search Engine Architectures - Search Engine Ranking - Managing Web Data - Search Engine User Interaction - Browsing - Applications of a Web Crawler - Taxonomy - Architecture and Implementation - Scheduling Algorithms - Evaluation - Structured Text Retrieval.

#### **UNIT 5: TYPES OF IR AND APPLICATIONS**

Parallel and Distributed IR – Data Partitioning – Parallel IR – Cluster-based IR – Distributed IR - Multimedia Information Retrieval – Challenges – Content Based Image Retrieval – Audio and Music Retrieval – Retrieving and Browsing Video – Fusion Models – Segmentation – Compression - Enterprise Search – Tasks – Architecture of Enterprise Search Systems – Enterprise Search Evaluation - Library Systems – Digital Libraries

#### **TEXT BOOKS**

- 1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", Second Edition, ACM Press Books, 2011.
- 2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, "Information Retrieval: Implementing and Evaluating Search Engines", The MIT Press, 2010.

- 1.C. Manning, P. Raghavan, and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008.
- 2. Bruce Croft, Donald Metzler and Trevor Strohman, "Search Engines: Information Retrieval in Practice", First Edition, Addison Wesley, 2009.

INT18R414	Para	Parallel and Distributed Computing				T 0	P 0	C 3			
Prerequisite	Distributed	Distributed Systems (INT18R358)  3 0 0 3  Distributed Systems (INT18R358)									
Course		Professional Elective									
Category											
Course Type	e Theory	Theory									
Objective(s)	• 7	<ul> <li>To understand the need and fundamentals of parallel computing paradigms</li> <li>To learn the nuances of parallel algorithm design</li> <li>To understand the programming principles in parallel and distributed computing architectures</li> </ul>									
Course Outc	•	i o iearn iew p	roblems that a	re sorved usin	g para	nei aigo	oriumis				
Course Oute		allal and distrik	nutad aamnutir	a architactur	og for i	any giv	on proble	am			
CO2		Apply parallel and distributed computing architectures for any given problem  Apply problem solving (analysis, design, and development) skills to distributed  applications									
CO3		pplications by	incorporating 1	parallel and d	istribu	ted com	puting				
CO4	Develop ap	pplications by	incorporating t	fault tolerance	)						
CO5			orithm to a para	allel one							
	COs with AB		<del>,</del>	<del>,</del>	_						
CO\SO	SO1	SO2	SO3	SO4	,	SO5		06			
CO1	M	Н						Н			
CO2	M	Н		M				Н			
CO3	Н		M	M				M			
CO4	M	Н		M		M	]	Н			
CO5		Н									

#### UNIT 1: INTRODUCTION TO PARALLEL COMPUTING

Scope of Parallel Computing – Parallel Programming Platforms – Implicit Parallelism – Limitations of Memory System Performance – Control Structure of Parallel Platforms – Communication Model of Parallel Platforms – Physical Organization of Parallel Platforms – Communication Costs in Parallel Machines – Impact of Process - Processor Mapping and Mapping Techniques.

#### **UNIT 2: PARALLEL ALGORITHM DESIGN**

Preliminaries – Decomposition Techniques – Characteristics of Tasks and Interactions – Mapping Techniques for Load Balancing – Methods for Containing Interaction Overheads – Parallel Algorithm Models – Basic Communication Operations – One-to-All Broadcast and All-to-One Reduction – All-to-All Broadcast and Reduction – All-Reduce and Prefix Sum Operations – Scatter and Gather – All-to-All Personalized Communication- Circular Shift – Improving the Speed of some Communication Operations

# UNIT 3: PROGRAMMING USING MESSAGE PASSING AND SHARED ADDRESS SPACE

Principles of Message Passing Programming – Building Blocks – Send and Receive Operations – MPI – Message Passing Interface – Topologies and Embedding – Overlapping Communication with Computation – Collective Communication and Computation Operations – Groups and Communicators – POSIX thread API – OpenMP: a Standard for Directive based Parallel Programming – Applications of Parallel Programming – Matrix-Matrix Multiplication – Solving Systems of Equations – Sorting Networks - Bubble Sort Variations – Parallel Depth First Search

#### **UNIT 4: DISTRIBUTED COMPUTING PARADIGM**

Paradigms for Distributed applications – Basic algorithms in Message passing Systems – Leader Election in Rings – Mutual Exclusion in Shared Memory

#### **UNIT 5: FAULT TOLERANT DESIGN**

Synchronous Systems with Crash Failures – Byzantine Failures – Impossibility in Asynchronous Systems - Formal Model for Simulation – Broadcast and Multicast – Specification of a Broadcast Service – Implementing a Broadcast Service – Multicast in Groups – Distributed Shared Memory – Linearizable – Sequentially Consistent Shared Memory – Algorithms

# **TEXT BOOK**

- 1. Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, —Introduction to Parallel Computing, Second Edition, Pearson Education, 2009.
  - 2. Haggit Attiya and Jennifer Welch, —Distributed Computing Fundamentals, Simulations and Advanced Topics, Second Edition, Wiley, 2012.

- 1. Norman Matloff, —Parallel Computing for Data Science With Examples in R, C++ and CUDAI, Chapman and Hall/CRC, 2015.
- 2. Wan Fokkink, —Distributed Algorithms: An Intuitive Approach, MIT Press, 2013.
- 3. M.L. Liu, —Distributed Computing Principles and Applications , First Edition, Pearson Education, 2011.

INT18R415	GRAPH THEORY			L	T	P	C				
111101415		GRAFII	HEOKI		3	1	0	4			
Prerequisite	Data Structures and Algorithms (INT18R271)										
Course	Professional Elective										
Category											
Course	Theory	Гћеогу									
Type											
Objective(s)			the graphs as								
			introduces th								
			nd combination				ımber t	heory			
G 0 1		ating and netw	ork security s	tudies in Con	nputer	Science.					
Course Outco	me(s)			1 1 0	0.1:		1 .1				
CO1			te mathematic				raph the	eory.			
CO2	Apply mathe	ematical defin	itions to identi	ify and constr	ruct exa	ımples					
CO3			ally assess a r								
CO4	Analyze the	e use of con	nbination of	theoretical k	nowled	lge and	indepe	endent			
	mathematica	al thinking in o	creative invest	igation of qu	estions	in graph	theory				
CO5	Identify the	reason from d	efinitions to co	onstruct math	ematic	al proofs	•				
Mapping of C	Os with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	S	SO5	SC	06			
CO1	M	Н	Н								
CO2	M	Н									
CO3											
CO4	Н	M					N	Л			
CO5			Н								

# UNIT 1 INTRODUCTION

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centers in tree – Rooted and binary trees.

#### UNIT 2 TREES, CONNECTIVITY & PLANARITY

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

# UNIT 3 MATRICES, COLOURING AND DIRECTED GRAPH

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

#### **UNIT 4 PERMUTATIONS & COMBINATIONS**

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - Arrangements with forbidden positions.

# UNIT 5 GENERATING FUNCTIONS

Generating functions - Partitions of integers - Exponential generating function - Summation operator - Recurrence relations - First order and second order - Non-homogeneous recurrence relations - Method of generating functions

#### **TEXT BOOKS:**

- 1. Narsingh Deo, Graph Theory: With Application to Engineering and Computer Science, Prentice Hall of India, 2003.
- 2. Grimaldi R.P., Discrete and Combinatorial Mathematics: An Applied Introduction, Addison Wesley, 1994.

- 1. Clark J. & Holton D.A., A First Look at Graph Theory, Allied Publishers, 1995.
- 2. Mott J.L., Kandel A. & Baker T.P., Discrete Mathematics for Computer Scientists and Mathematicians, Prentice Hall of India, 1996.
- 3. Liu C.L., Elements of Discrete Mathematics, McGraw Hill, 1985.
- 4. Rosen K.H., Discrete Mathematics And Its Applications, McGraw Hil, 2007

#### **AI STREAM**

INT18R310		BIO INFORMATICS				T	P	C			
Prerequisite	Nil				3	0	0	3			
Course		Professional Elective									
Category											
Course	Theory										
Type											
Objective(s)	• Exp	posed to the	need for Bioin	formatics techi	nologies						
	• Be	familiar wi	th the modeling	techniques							
	• Lea	arn microar	ray analysis								
	• Ex ₁	Exposed to Pattern Matching and Visualization									
<b>Course Outc</b>											
CO1	Learn the s	structural bi	oinformatics								
CO2	Understand	d the conce	ot of data wareh	ousing and dat	ta mining	g in bioi	nforma	tics			
CO3	Examine d	ifferent mo	dels in bio infor	matics							
CO4	Demonstra	te the vario	ous patterns of D	NA							
CO5	Learn to an	nalyze imag	e and data extra	action in inforn	natics da	tabase					
Mapping of	COs with Al	BET SOs									
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
CO1	M	Н	Н								
CO2	M										
CO3					Н						
CO4	Н	M					M				
CO5			M								

#### Course Topic(s)

#### **UNIT 1: INTRODUCTION**

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics - Biological Data Integration System.

# UNIT 2: DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

#### **UNIT 3: MODELING FOR BIOINFORMATICS**

Hidden markov modeling for biological data analysis – Sequence identification –Sequence classification – multiple alignment generation – Comparative modeling –Protein modeling – genomic modeling – Probabilistic modeling – Bayesian networks – Boolean networks - Molecular modeling – Computer programs for molecular modeling.

#### **UNIT 4: PATTERN MATCHING AND VISUALIZATION**

Gene regulation – motif recognition – motif detection – strategies for motif detection – Visualization – Fractal analysis – DNA walk models – one dimension – two dimension – higher dimension – Game representation of Biological sequences – DNA, Protein, Amino acid sequences.

#### **UNIT 5: MICROARRAY ANALYSIS**

Microarray technology for genome expression study – image analysis for data extraction – preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis – gene network analysis – Compared Evaluation of Scientific Data Management Systems – Cost Matrix – Evaluation model - Benchmark – Tradeoffs.

#### **TEXT BOOK**

1. Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.

- 1. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2003.
- 2. Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2005.

					L	T	P	C				
INT18R312	NEURAL 1	NETWORKS	S AND FUZZ	Y LOGIC	3	1	0	4				
Prerequisite	Nil						I					
Course	Professional	Elective										
Category												
Course	Theory											
Type												
Objective(s)	<ul><li>Reveal problem</li><li>Introdusystems</li></ul>	problems.  • Introduce the theory and applications of artificial neural network and fuzzy systems to engineering applications with emphasis on image processing and										
	Discuss applicate Competition	<ul> <li>Discuss neural networks and fuzzy systems, architectures, algorithms and applications, including Back-propagation, BAM, Hopfield network, Competitive Learning, Fuzzy inference methods and expert systems</li> </ul>										
Course Outc												
CO1			network archit the architecture	•	· limita	tions and	d appro	priate				
CO2	_	-	a neural net		,			es of				
602			ocessing) usin									
CO3	engineering a	_	nd understand	ing of fuzzy s	system	as applie	ea in					
CO4	Learn the papplications finance, rob problems that	power and of including spotic control, at fall under the	usefulness of peech synthes signal proces he category of	sis, diagnost sing, compupattern recog	ic pro ter vis	blems, bion and	ousiness many	s and				
CO5	Develop mod	dels for differ	ent application	ns using fuzzy	y systei	m and M	atLab					
	COs with ABI											
CO\SO	SO1	SO2	SO3	SO4	5	SO5	SC	)6				
CO1			Н									
CO2		Н										
CO3	Н		Н			M						
CO4	Н		Н									
CO5		M										

# UNIT 1: INTRODUCTION TO NEURAL NETWORKS

Introduction - Humans and Computers - Organization of the Brain - Biological Neuron - Biological and Artificial Neuron Models - Characteristics of ANN - Models of ANNs - McCulloch-Pitts Model - Feed forward & feedback networks - learning rules - Hebbian learning rule - perception learning rule - delta learning rule - Widrow-Hoff learning rule - correction learning rule - Winner - lake all learning rule - etc.

# **UNIT 2: FEED FORWARD NEURAL NETWORKS**

Classification model - Features & Decision regions - training & classification using discrete

perception - algorithm - single layer continuous perception networks for linearly separable classifications - linearly non- separable pattern classification - Delta learning rule for multiperception layer - Generalized delta learning rule -Back-propagation training - learning factors - Examples.

### **UNIT 3: ASSOCIATIVE MEMORIES**

Paradigms of Associative Memory - Pattern Mathematics - Hebbian Learning - General Concepts of Associative Memory - Bidirectional Associative Memory (BAM) Architecture - BAM Training Algorithms - Storage and Recall Algorithm - BAM Energy Function - Hopfield networks - Basic Concepts - Training & Examples - SOM-UN supervised learning of clusters - winner-take-all learning - recall mode, Initialization of weights - seperability limitations del - Historical Developments - Potential Applications of ANN.

### **UNIT 4: CLASSICAL SETS**

Introduction to classical sets – properties - Operations and relations -Fuzzy sets –Membership – Uncertainty – Operations – properties - fuzzy relations – cardinalities - membership functions - Overview of Classical Sets - Membership Function - a-cuts - Properties of a-cuts – Decomposition – Theorems - Extension Principle

# UNIT 5: UNCERTAINTY

### **BASED INFORMATION**

Information & Uncertainty - Non specificity of Fuzzy & Crisp sets - Fuzziness of Fuzzy Sets - Fuzzification - Membership value assignment - development of rule base and decision making system - Defuzzification to crisp sets - Defuzzification methods - Neural network applications - Process identification - control - fault diagnosis - Fuzzy logic applications - Fuzzy logic control and Fuzzy classification.

### **TEXT BOOKS**

- 1. S. Rajasekharan and G. A. Vijayalakshmi pai, "Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications", PHI Publication, 2011.
- 2. John Yen and Reza Langan, "Fuzzy Logic: Intelligence, Control and Information", Pearson Education, 2011.

- 1. Simon Haykin, "Neural Networks- A comprehensive foundation", Pearson Education, 2005
- 2. S.N.Sivanandam, S.Sumathi, S. N. Deepa "Introduction to Neural Networks using MATLAB 6.0", TMH, 2006.
- 3. James A Freeman and Davis Skapura, Neural Networks Pearson Education, 2002.

					L	T	P	C					
INT18R313		MACHIN	NE LEARNING		3	1	0	4					
Prerequisite	Data Struct	ures and Al	gorithms (INT18	3R271)				•					
Course	Professiona	1 Elective											
Category													
Course	Theory												
Type													
Objective(s)	• To i	• To introduce students to the basic concepts and techniques of Machine											
	Learning												
	• To l	To have a thorough understanding of the Supervised and Unsupervised											
	learning t	learning techniques											
	• To s	study the va	rious probability	based learnin	g techr	niques							
		ınderstand	graphical models	s of machine le	earning	algorith	ms						
Course Outc													
CO1			upervised, unsup					g					
CO2			e machine learn										
CO3	Suggest sur given probl		supervised or se	mi-supervised	learnin	ng algorit	thms fo	r any					
CO4			se the appropriate										
CO5			ne learning algor	rithms to impr	ove cla	ssificatio	n effic	iency					
Mapping of	COs with AB	<b>SET SOs</b>											
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6						
CO1		Н	Н										
CO2	M	Н											
CO3			L	Н									
CO4	Н	M			L		M						
CO5	Н		Н	M									
Course Topi	c(s)												

#### tivite 1 spic(s)

### **UNIT 1: INTRODUCTION**

Learning – Types of Machine Learning –Supervised Learning – The Brain and the Neuron–Design a Learning System –Perspectives and Issues in Machine Learning–Concept Learning Task –Concept Learning as Search –Finding a Maximally Specific Hypothesis –Version Spaces and the Candidate Elimination Algorithm –Linear Discriminants –Perceptron –Linear Separability –Linear Regression

# **UNIT 2: LINEAR MODELS**

Multi-layer Perceptron – Going Forwards –Going Backwards: Back Propagation Error –Multi-layer Perceptron in Practice –Examples of using the MLP –Overview –Deriving Back-Propagation –Radial Basis Functions and Splines –Concepts –RBF Network –Curse of Dimensionality–Interpolations and Basis Functions –Support Vector Machines

# **UNIT 3: TREE AND PROBABILISTIC MODELS**

Learning with Trees –Decision Trees –Constructing Decision Trees –Classification and Regression Trees –Ensemble Learning –Boosting –Bagging –Different ways to Combine Classifiers –Probability and Learning –Data into Probabilities –Basic Statistics –Gaussian Mixture Models –Nearest Neighbor Methods –Unsupervised Learning –K means Algorithms –

Vector Quantization -Self Organizing Feature Map

### UNIT 4: DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS

Dimensionality Reduction –Linear Discriminant Analysis –Principal Component Analysis – Factor Analysis –Independent Component Analysis –Locally Linear Embedding –Isomap –Least Squares Optimization –Evolutionary Learning –Genetic algorithms –Genetic Offspring: -Genetic Operators –Using Genetic Algorithms –Reinforcement Learning –Overview –Getting Lost Example –Markov Decision Process

### **UNIT 5: GRAPHICAL MODELS**

Markov Chain Monte Carlo Methods—Sampling—Proposal Distribution—Markov Chain Monte Carlo—Graphical Models—Bayesian Networks—Markov Random Fields—Hidden Markov Models—Tracking Methods

### **TEXTBOOKS:**

- 1.Stephen Marsland, —Machine Learning —An Algorithmic Perspectivell, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 2. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013.

- 1.Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datall, First Edition, Cambridge University Press, 2012.
- 2.Jason Bell, —Machine learning –Hands on for Developers and Technical Professionals^{II}, First Edition, Wiley, 2014
- 3.Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)||, Third Edition, MIT Press, 2014

					L	T	P	C			
INT18R314		SOFT CO	MPUTING		3	1	0	4			
Prerequisite	Nil							I			
Course	Professiona	l Elective									
Category											
Course	Theory										
Type											
Objective(s)	<ul><li>To l to solving</li><li>To logic, an</li></ul>	<ul> <li>To give students knowledge of soft computing theories fundamentals,</li> <li>To learn the fundamentals of non-traditional technologies and approaches to solving hard real-world problems.</li> <li>To learn and apply artificial neural networks, fuzzy sets and fuzzy logic, and genetic algorithms in problem solving and use of heuristics based on human experience</li> </ul>									
<b>Course Outco</b>	ome(s)	•									
CO1			tolerance of in ligent machine		nd unc	ertainty	for desi	ign of			
CO2		ft computing	fundamentals		system	s for so	lving v	arious			
CO3	Integrate th	e knowledge	of neural net ough sets, chao				c algor	ithms,			
CO4	Learn about		fuzzy logic,				appro	priate			
CO5			gorithms and arning situation		om se	arch pro	ocedure	s for			
Mapping of O	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	SO5	1	SO6				
	M	Н	Н								
CO2	M	Н									
CO3				M	Н						
	Н	M		Н	Н		M				
CO5	()		Н								

### UNIT 1: NEURAL NETWORKS -I

(Introduction and Architecture) Neuron, Nerve Structure and Synapse, Artificial Neuron and its Model, Activation Functions, Neural Network Architecture: Single Layer and Multilayer Feed Forward Networks, Recurrent Networks. Various Learning Techniques; Perception and Convergence Rule, Auto-Associative and Hetro-Associative Memory.

### UNIT 2: NEURAL NETWORKS -II

(Back Propagation Networks) Architecture: Perceptron Model, Solution, Single Layer Artificial Neural Network, Multilayer Perception Model; Back Propagation Learning Methods, Effect of Learning Rule Co-Efficient ;Back Propagation Algorithm, Factors Affecting Back Propagation Training, Applications.

# **UNIT 3: FUZZY LOGIC -I**

(Introduction) Basic Concepts of Fuzzy Logic, Fuzzy Sets and Crisp Sets, Fuzzy Set Theory and

Operations, Properties of Fuzzy Sets, Fuzzy and Crisp Relations, Fuzzy to Crisp Conversion.

### **UNIT 4: FUZZY LOGIC-II**

(Fuzzy Membership, Rules) Membership Functions, Interference in Fuzzy Logic, Fuzzy If -Then Rules, Fuzzy Implications and Fuzzy Algorithms, Fuzzifications and Defuzzificataions, Fuzzy Controller, Industrial Applications

### UNIT 5: GENETIC ALGORITHM

Basic Concepts, Working Principle, Procedures of GA, Flow Chart of GA, Genetic Representations, (Encoding) Initialization and Selection, Genetic Operators, Mutation, Generational Cycle, Applications

### **TEXTBOOKS:**

- 1.S. Rajasekaran and G.A. Vijayalakshmi Pai, —Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, Prentice Hall of India, 2003.
- 2.N.P.Padhy, Artificial Intelligence and Intelligent Systems, Oxford University Press, 2005.
- 3.J.S.R. Jang, C.T. Sun and E. Mizutani, —Neuro-Fuzzy and Soft Computingl, Pearson Education, 2004.

- 1. Siman Haykin, —Neural Networks ||, Prentice Hall of India, 1999
- 2.Timothy J. Ross, —Fuzzy Logic with Engineering Applications II, Third Edition, Wiley India, 2010
- 3. S.Y.Kung, —Digital Neural Network, Prentice Hall International, 1993.
- 4.Aliev.R.A and Aliev,R.R, Soft Computing and its Application^{||}, World Scientific Publishing Company, 2001

					L	P	C	
INT18R416	SPEECH	AND LANG	GUAGE PROC	CESSING	3	0	0	3
Prerequisite	Programmin	ng for Problem	m Solving (CSI	E18R171)				
Course	Professiona	l Elective						
Category								
Course	Theory							
Type								
Objective(s)	• To 1	earn the fund	amentals of nat	ural language	proces	ssing		
	• To a	ppreciate the	use of CFG an	d PCFG in N	LP			
	• To ı	inderstand the	e role of seman	tics and pragr	natics			
Course Outo	come(s)							
CO1	To tag a giv	en text with	basic Language	features				
CO2	To design a	n innovative	application usir	ng NLP comp	onents			
CO3	To impleme	ent a rule base	ed system to tac	kle morpholo	gy/syn	tax of a	languag	ge
CO4			used for statisti					
CO5			use of differen	t statistical ap	proach	es for di	fferent	types
	of NLP app							
	COs with AB	ET SOs						
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6	
CO1	Н	M	M					
CO2	M						M	
CO3			M					
CO4	Н	Н					M	
CO5			Н					
C T:	-(-)							

### UNIT 1: INTRODUCTION

Words-Regular Expressions and Automata -Words and Transducers -N-grams -Part-of-Speech –Tagging -Hidden Markov and Maximum Entropy Models.

# **UNIT 2: SPEECH**

Speech–Phonetics -Speech Synthesis -Automatic Speech Recognition -Speech Recognition: -Advanced Topics -Computational Phonology

### **UNIT 3: SYNTAX**

Formal Grammars of English -Syntactic Parsing -Statistical Parsing -Features and Unification -Language and Complexity.

# **UNIT 4: SEMANTICS AND PRAGMATICS**

The Representation of Meaning-Computational Semantics-Lexical Semantics-Computational Lexical Semantics-Computational Discourse

### **UNIT 5: APPLICATIONS**

Information Extraction - Question Answering and Summarization - Dialogue and Conversational Agents - Machine Translation

### **TEXTBOOKS:**

1.Daniel Jurafsky,—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speechl, Pearson Publication, 2014.

2.Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with

Pythonl, First Edition, O'Reilly Media, 2009.

- 1.Breck Baldwin, —Language Processing with Java and LingPipe Cookbookl, Atlantic Publisher, 2015.
- 2.Richard M Reese, —Natural Language Processing with Javal, O'Reilly Media, 2015.
- 3. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processingl, Second Edition, Chapman and Hall/CRC Press, 2010.

					L	T	P	C				
INT18R417		DEEP LE	ARNING		3	1	0	4				
Prerequisite	Nil											
Course	Professiona	l Elective										
Category												
Course Type	Theory	, and the second										
Objective(s)	<ul><li>build</li><li>To s</li><li>To i</li><li>To e</li><li>time</li></ul>	<ul> <li>To present the mathematical, statistical and computational challenges of building neural networks</li> <li>To study the concepts of deep learning</li> <li>To introduce dimensionality reduction techniques</li> <li>To enable the students to know deep learning techniques to support real-time applications</li> <li>To examine the case studies of deep learning techniques</li> </ul>										
Course Outo		Examine the ca	se studies of d	cep learning	icciiiic	ues						
CO1		basics of deep	learning									
CO2			earning models	S								
CO3	Realign hig	h dimensional	data using red	uction techni	ques							
CO4	Analyze op	timization and	generalization	in deep lear	ning							
CO5		deep learning	applications									
	COs with AB	ET SOs	<b>,</b>	<b>,</b>	_							
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6					
CO1	M	Н	Н									
CO2	M	Н										
CO3												
CO4	Н	M					M					
CO5			Н									
Course Toni	c(s)											

### **UNIT 1: INTRODUCTION**

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)-Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates

# **UNIT 2: DEEP NETWORKS**

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning

### **UNIT 3: DIMENTIONALITY REDUCTION**

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures - AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization

# UNIT 4: OPTIMIZATION AND GENERALIZATION

Optimization in deep learning— Non-convex optimization for deep networks- Stochastic Optimization-Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

### UNIT 5: CASE STUDY AND APPLICATIONS

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions **REFERENCES:** 

- 1. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
  - 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

# **OPEN ELECTIVE**

INT18R31:	5 WEB PROGRAMMING  L T P  2 0 0											
		WEDTRO	GRAMMINI		3	0	0	3				
Prerequisite	Nil											
Course	Open Elec	etive										
Category												
Course Type	Theory											
Objective(s)	• To le	arn the theore	tical and practi	cal concepts o	f web p	rogram	ning.					
		• To introduce the programming languages for developing simple web applications.										
		• To make students to understand about the architecture of web server and deployment of web site										
	_	To teach methodologies useful for the implementation of dynamic web										
	appli	cations		-								
	• To e	To efficiently design and implement web applications using server side										
		programming languages										
Course Outc	<del></del>											
CO1			nming concept	ts of HTML,	DHTM	L, CSS	, JavaS	cript,				
		other Web ted										
CO2			ramming cond	cepts and uti	lize Ja	va Gra	phical	User				
G02		orogram writir		•	D .	1.0	1	1.1				
CO3			for distributed	environment.	Design	and De	velop n	nultı-				
CO4	tier applic		1 1 . 4	ACD ICD C	1 - 4 - \ 4	1-	C					
CO4	_		rel platforms (A			-	ice son	ware				
CO5			eet specified us asics related to				ications	and				
			ng web pages.	develop dyli	amic W	co appi	10ations	anu				
Mapping of			ng wee pages.									
CO\SO	SO1	SO2	SO3	SO4	SO5	I	SO6					
CO1	M	Н	Н		L							
CO2	M H											
CO3					Н							
CO4	Н	M		M			M					
CO5		L H										
Course Topi	c(s)	•	•	•	•							

## Course Topic(s)

# **UNIT 1: INTRODUCTION**

World Wide Web – History of the World Wide Web, World Wide Web Consortium – HTML – Dynamic HTML – Object model and collections, Event model, Filters and Transitions.

# **UNIT 2: JAVA SCRIPT**

Introduction – Simple program, Memory concepts, Arithmetic, Decision making - Equality and Relational operators – Control statements – Control structures, Operators – Functions – Programmer defined functions, JavaScript global functions, Recursion – Arrays – References

and Reference parameters, Passing arrays to functions, Multidimensional arrays – Objects – Object types, Cookies.

### **UNIT 3: XML**

Introduction, Structuring data, XML namespaces, Document Type Definitions (DTDs) and Schemas, Document type definitions, W3C XML schema documents, XML vocabularies, Document Object Model (DOM), DOM methods, Simple API for XML (SAX), Extensible Style sheet Language (XSL), Simple Object Access Protocol (SOAP).

### **UNIT 4: PERL, CGI AND PHP**

Introduction, String processing and Regular expressions, Viewing Client/Server environment variables, Form processing and Business logic, Verifying a username and password, Connecting to a database, Cookies, Operator precedence chart.

### **UNIT 5: JAVA PROGRAMMING**

Classes – Constructors, Garbage collection - Overloading methods – Overriding methods - Exception handling - Multithreading – Creating a thread, Synchronization, Inter thread communication - Streams – Byte streams, Character streams.

### **TEXT BOOKS:**

- 1. 1. Harvey Deitel, Abbey Deitel, "Internet and World Wide Web: How To Program" 5th Edition.
- 2. Herbert Schildt, "Java The Complete Reference, 7th Edition". Tata McGraw-Hill.

- 1. John Pollock, "Javascript A Beginners Guide", 3rd Edition Tata McGraw-Hill.
- 2. Keyur Shah, "Gateway to Java Programmer Sun Certification", Tata McGraw Hill, 2002.

INT18R31	1				L	T	P	C			
6		BIG DAT	TA ANALYTICS	5	3	0	0	3			
Prerequisite	Nil					•	· ·				
Course	Open Elec	ctive									
Category											
Course Type	e Theory										
Objective(s)	Hade	<ul> <li>Prepare the students to understand and practice Big Data Analytics using Hadoop Ecosystem and prepare them for a Career in Analytics as a Hadoop Developer, Hadoop Administrator, Data Scientist.</li> </ul>									
Course Outo	come(s)										
CO1		Inderstand the key issues on big data, characteristics, data sources and the associated applications in intelligent business and scientific computing.									
CO2		Acquire fundamental enabling techniques and scalable algorithms in big data									
CO3			nodels and scieng data analytics.	ntific compu	ting p	aradigms	s, and	apply			
CO4	Achieve services,	adequate po health ser	erspectives of bivices, social net	tworking, ast			_				
CO5			echniques and too				eate stat	istical			
Mapping of	COs with Al	BET SOs									
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
CO1	M	Н	Н								
CO2	M	Н									
CO3				L							
CO4	Н	M					M				
CO5			M								
Course Toni	a(a)										

## **UNIT 1: INTRODUCTION TO BIG DATA**

Introduction to Big Data Platform – Challenges of conventional systems – Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting – Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error.

### **UNIT 2: MINING DATA STREAMS**

Introduction to Streams Concepts – Stream data model and architecture – Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window – Realtime Analytics Platform(RTAP) applications – case studies – real time sentiment analysis, stock market predictions.

### **UNIT 3: HADOOP**

History of Hadoop-The Hadoop Distributed File System —Components of Hadoop -Analyzing The Data with Hadoop-Scaling Out-Hadoop Streaming-Design of HDFS-Java interfaces to HDFS-Basics-Developing a Map Reduce Application-How Map Reduce Works-Anatomy of a

Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort-Task execution-Map Reduce Types and Formats

### **UNIT 4: HADOOP ENVIRONMENT**

Setting up a Hadoop Cluster -Cluster specification -Cluster Setup and Installation - Hadoop Configuration-Security in Hadoop -Administering Hadoop -HDFS -Monitoring-Maintenance-Hadoop benchmarks-Hadoop in the cloud

# **UNIT 5: FRAMEWORKS**

Applications on Big Data Using Pig and Hive –Data processing operators in Pig –Hive services – HiveQL –Querying Data in Hive -fundamentals of HBase and ZooKeeper -IBM InfoSphere-. Visualizations -Visual data analysis techniques, interaction techniques.

### **TEXT BOOKS:**

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

	TTT 1	CLD.											
3.	Bill	Franks,	"Taming	the Big	Data T	idal Wa	ave: Fi	nding	g Opp	ortun	ities i	n Huge	Data
Stream	ms	with	advanced	anal	lystics",	Jol	nn	Wile	ey	&	SOI	1s,	2012.
2. G1	enn .	J. Myatt	t, "Making	g Sense	of Data	", John	Wiley	& 8	Sons,	2007	Pete	Warder	n, Big
Data	Gloss	sary, O'I	Reilly, 201	11.									

INT18R317	INFOR	RMATION TH	HEORY & CO	ODING	L 3	T 0	P 0	C 3			
Prerequisite	Nil				] 3	U	U	3			
Course Category	Open Electr	ive									
Course Type	Theory										
Objective(s)	Info  To l  Info  Des	<ul> <li>To introduce to the students the concept of information and entropy of Information.</li> <li>To know the concept of compression of information, error control of Information, and securing information through cryptography.</li> <li>Describe the mathematical foundation of compression, error control and security of information.</li> </ul>									
Course Outo											
CO1	Understand	the basic info	rmation and en	ntropy.							
CO2		ource coding ommunication		decoding a	nd erro	or contro	ol meth	nods as			
CO3	Understand	different type	s coding techn	iques.							
CO4	Understand	the basic num	ber theory of	coding techi	niques.						
CO5	Analysis th	e various algoi	rithms techniq	ues.							
Mapping of	COs with AB	ET SOs									
CO\SO	SO1	SO2	SO3	SO4	SO	5	SO6				
CO1	M	Н	Н								
CO2	M	Н		Н							
CO3					M						
CO4	Н	M			Н		M				
CO5			Н								

### **UNIT 1: INFORMATION THEORY & SOURCE CODING**

Introduction to Information Theory- Entropy & Types of Entropy Source Coding, Prefix Coding, Channel Capacity

### **UNIT 2: COMPRESSION ALGORITHMS**

Optimal Compression- Compression Algorithms, Huffman Coding, Adaptive Huffman Compression, Dictionary Based Compression, Speech Compression, Sliding Window Compression, LZW,RLE, Lossy & Lossless Compression Schemes, Image Compression – GIF,JPEG

### **UNIT 3: ERROR CONTROL CODING TECHNIQUES**

Types of Codes - Error Checking & Correcting Codes, Linear Block Codes, Cyclic Codes, BCH Codes, Convolution Codes

### **UNIT 4: BASIC NUMBER THEORY**

Modular Arithmetic, Solving ax+by=d, Congruence's, Chinese Remainder Theorem Modular Exponentiation, Fermat's Little and Euler Theorem, Prime Number Generation, Random Number Generation, Primitive Roots, Legendre and Jacobi Symbols, Discrete Probability, Discrete Logarithms

# **UNIT 5: CRYPTOGRAPHIC TECHNIQUES**

Security Goals, Threats and Attack on Information-Classic Cryptography-Symmetric Key Cryptography – Stream Ciphers, Block Cipher, Stream Cipher, DES, Triple DES, AES-Public and Private Key Cryptography – RSA, Diffie-Hellman-Hash Function – MD5, SHA-1, Digital Signature

### **TEXTBOOKS**

- 1. Ranjan Bose, "Information Theory, Coding and Cryptography", Tata McGrawHill, Second Edition 2012
- 2. R Avudaiammal, "Information Coding Techniques", Tata McGrawHill, Second Edition.2009 **REFERENCES**
- 1.Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 2002.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 2005.

INT18R318	INTRO		TO INFORM	ATION	L	T	P	C				
11/11/01/510		SECU	JRITY		3	0	0	3				
Prerequisite	Nil											
Course	Open Electi	ve										
Category												
Course	Theory	heory										
Type												
Objective(s)	It covers In	covers Information Security, Vulnerabilities & threats, attacks, Risk Analysis,										
	logical desi	gical design and physical design										
<b>Course Outc</b>	ome(s)											
CO1	Understand	nderstand the importance of information security and models to develop secure										
	information	nformation system.										
CO2	Learn abou	t various kin	ds of issues,	threats, attac	eks inv	olved w	hile see	curing				
	information	-										
CO3	Analyze the	risks involve	d in information	on security								
CO4	Design and	develop an in	formation secu	ırity system								
CO5	Learn the v	arious technol	ogies, tools an	d techniques	used to	ensure s	security	•				
Mapping of	COs with AB	ET SOs										
CO\SO	SO1	SO2	SO3	SO4	SO5	5	SO6					
CO1	M	Н	Н				L					
CO2	Н	Н					Н					
CO3			L	Н	L	·						
CO4	Н	M					M					
CO5			Н									

### **UNIT 1: INTRODUCTION**

History, Information Security, Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access, The SDLC, The Security SDLC

### **UNIT 2: SECURITY INVESTIGATION**

Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues

# **UNIT 3: SECURITY ANALYSIS**

Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk

### **UNIT 4: LOGICAL DESIGN**

Blueprint for Security, Information Security Policy, Standards and Practices, ISO 17799/BS 7799, NIST Models, VISA International Security Model, Design of Security Architecture, Planning for Continuity

### **UNIT 5: PHYSICAL DESIGN**

Security Technology, IDS, Scanning and Analysis Tools, Cryptography, Access Control Devices, Physical Security, Security and Personnel

### **TEXT BOOK**

1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", 4th Edition, Vikas Publishing House, New Delhi, 2011.

- 1. Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", 6th edition vol-5, CRC Press LLC, 2011.
- 2. Stuart Mc Clure, Joel Scrambray, George Kurtz, "Hacking Exposed 6th edition –Network security secrets and solutions", Tata McGraw-Hill, 2009.
- 3. Matt Bishop, "Computer Security Art and Science", Addison-Wesley Professional, 2003.

INT18R319	CYBER FORENSICS				L	T	P	C					
		CIDERIC	RENSIES		3	0	0	3					
Prerequisite	Nil												
Course	Open Electi	ve											
Category													
Course	Theory												
Type													
Objective(s)	• To u	To understand the fundamentals of Computer Forensics and computing											
	Inve	Investigations.											
	• To r	• To recognize the legal underpinnings and critical laws affecting forensics.											
	• To a	To apply the tools and methods to uncover hidden information in digital											
	syste	ems.											
	• To 1	earn about curi	rent licensing	and certificat	ion req	uiremen	ts to bu	ild					
	the c	• To learn about current licensing and certification requirements to build the career in digital forensic.											
<b>Course Outco</b>	ome(s)												
CO1	Understand	of the role of o	computer forei	nsics									
CO2		ne of the curre											
CO3	Describe an	d identify basi	c principles of	f good profes	sional	practice	for a fo	rensic					
	computing p	oractitioner											
CO4	Demonstrat	e an understan	ding of issues	related to p	rivacy a	and deter	rmine l	now to					
		n technically a											
CO5		forensic tools	in different si	tuations.									
Mapping of O				T									
CO\SO	SO1	SO2	SO3	SO4	5	SO5	S	06					
CO1			Н										
CO2	H	M											
CO3			Н	Н									
CO4				Н									
CO5	Н	M					]	Н					
Course Tonio	-(c)												

## **UNIT 1: NTRODUCTION**

The Scope of Computer Forensics - Windows Operating and File Systems -Handling Computer Hardware - Anatomy of Digital Investigation.

### **UNIT 2: INVESTIGATIVE SMART PRACTICES**

Forensics Investigative Smart Practices – Time and Forensics – Incident closure

# **UNIT 3: LAWS AND PRIVACY CONCERNS**

Laws Affecting Forensic Investigations – Search Warrants and Subpoenas – Legislated Privacy Concerns – The admissibility of Evidence – First Response and Digital Investigator

# **UNIT 4: DATA ACQUISITION AND REPORT WRITING**

Data Acquisition – Finding Lost Files – Document Analysis – Case Management and Report Writing – Building a Forensics Workstation

# **UNIT 5: TOOLS AND CASE STUDIES**

Tools of the Digital Investigator - Licensing and Certification - Case Studies: E-mail Forensics - Web Forensics - Searching the Network - Excavating a Cloud - Mobile device Forensics.

# **TEXTBOOKS:**

- 1. Michael Graves, "Digital Archaeology: The Art and Science of Digital Forensics", Addison-Wesley Professional, 2014.
- 2. Darren R. Hayes, "Practical Guide to Computer Forensics Investigation", Pearson, 2015.
- 3. Albert J. Marcella and Frederic Guillossou, "Cyber Forensics: From Data to Digital Evidence" Wiley, 2015.

# **REFERENCE:**

1. Bill Nelson, Amelia Phillips and Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth Edition, Cengage Learning, 2013.

	ESSI	ENTIALS OI	FINFORMAT	ΓΙΟΝ	L	T	P	C					
INT18R320		TECHN	OLOGY		3	0	0	3					
Prerequisite	NIL				I.	1							
Course	Open Electi	ve											
Category													
Course	Theory												
Type													
Objective(s)	To know	know the concept of Internet, Networks and its working principles and											
	understand	nderstand the various applications related to Information Technology.											
<b>Course Outc</b>	ome(s)												
CO1	Understand	the concept o	f website desig	gn and types	of serve	er.							
CO2	Know abou	t scripting lan	guages.										
CO3	Identify the	concepts of I	nternet, Netwo	rks and its w	orking	principle	s.						
CO4	Understand	the concept o	f mobile comn	nunication.									
CO5	Understand	various appli	cations related	to Information	n Tech	nology.							
Mapping of	COs with AB	ET SOs											
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6						
CO1	M	H	H										
CO2	M	H											
CO3													
CO4	Н	M					M						
CO5	<u> </u>		Н										

### **UNIT 1: WEB ESSENTIALS**

Creating a Website - Working principle of a Website - Browser fundamentals - Authoring tools - Types of servers: Application Server - Web Server - Database Server

### **UNIT 2: SCRIPTING ESSENTIALS**

Need for Scripting languages - Types of scripting languages - Client side scripting - Server side scripting - PHP - Working principle of PHP - PHP Variables - Constants - Operators - Flow Control and Looping - Arrays - Strings - Functions - File Handling - PHP and MySQL - PHP and HTML - Cookies - Simple PHP scripts

### **UNIT 3: NETWORKING ESSENTIALS**

Fundamental computer network concepts - Types of computer networks - - Network layers - TCP/IP model - Wireless Local Area Network - Ethernet - WiFi - Network Routing - Switching - Network components.

### **UNIT 4: MOBILE COMMUNICATION ESSENTIALS**

Cell phone working fundamentals - Cell phone frequencies & channels - Digital cell phone components - Generations of cellular networks - Cell phone network technologies / architecture - Voice calls & SMS.

### **UNIT 5: APPLICATION ESSENTIALS**

Creation of simple interactive applications - Simple database applications - Multimedia applications - Design and development of information systems - Personal Information System - Information retrieval system - Social networking applications.

# **TEXT BOOKS:**

- 1. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY, 2014.
- 2. James F. Kurose, "Computer Networking: A Top-Down Approach", Sixth Edition, Pearson, 2012.

# **REFERENCES:**

1. Gottapu Sasibhushana Rao, "Mobile Cellular Communication", Pearson, 2012. 2. R. Kelly Rainer, Casey G. Cegielski, Brad Prince, "Introduction to Information Systems", Fifth Edition, Wiley Publication, 2014. 3. it-ebooks.org

INT10D221					L	T	P	C	
INT18R321		INTERN	ET AND JAV	'A	3	0	0	3	
Prerequisite	Programmi	ng for Prob	lem Solving (	CSE18R171)					
Course		pen Elective							
Category									
Course	Theory	heory							
Type		•							
Objective(s)	To learn	o learn the basics of Internetworking, Routing, World Wide Web, Java							
	Programmi	ng							
	with simple	ith simple case studies.							
Course Outo	ome(s)								
CO1	Understand	Understand the concept of Internetworking with TCP/IP							
CO2	Learn routi	ng for high	speed multime	edia traffic					
CO3	Learn the f	undamental	s in WWW, H	TML and XML.					
CO4	Understand	l Java for N	etworking app	lication					
CO5	Understand	I the basic	concepts in E	E-com, Network	operati	ng syste	em and	Web	
	design.								
Mapping of	COs with AE	BET SOs			•				
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6		
CO1	Н	Н	M						
CO2	M	Н	H	M					
CO3					M				
CO4	Н	M		Н			M		
CO5			L		Н				
Course Toni	o(a)	·	<del></del>		-	-			

## UNIT 1: INTERNETWORKING WITH TCP / IP

Review of network technologies, Internet addressing, Address resolution protocols (ARP / RARP), Routing IP datagrams, Reliable stream transport service (TCP) TCP / IP over ATM networks, Internet applications - E-mail, Telnet, FTP, NFS, Internet traffic management.

### **UNIT 2: INTERNET ROUTING**

Concepts of graph theory, Routing protocols, Distance vector protocols (RIP), Link state protocol (OSPP), Path vector protocols (BGP and IDRP), Routing for high speed multimedia traffic, Multicasting, Resource reservation (RSVP), IP switching.

### **UNIT 3: WORLD WIDE WEB**

HTTP protocol, Web browsers netscape, Internet explorer, Web site and Web page design, HTML, Dynamic HTML, CGI, Java script.

# **UNIT 4: INTRODUCTION TO JAVA**

The java programming environment, Fundamental Programming structures, Objects and Classes, Inheritance, Event handling, Exceptions and Debugging, Multithreading, RMI.

### **UNIT 5: JAVA PROGRAMMING**

Networking with Java, Swing: Applets and Applications, Menu's & Tool Bars, Java and XML – Creating packages, Interfaces, JAR files & Annotations, Javabeans, JDBC.

### **TEXTBOOKS**

- 1. Douglas E.Comer, "Internetworking with TCP/IP", Vol. I: 5th edition, Pearson Education, 2007 (Unit I &II)
- 2. Robert W.Sebesta, "Programming the worldwide web", 3/e, Pearson Education, 2007.

- 3. Steven Holzner et. al, "Java 2 Programming", Black Book, Dreamtech Press, 2006. **REFERENCES**
- 1. Cay S.Hortsmann, Gary Cornwell, "Core Java 2", Vol I, Pearson Education, 7/e, 2005.
- 2. W. Richard Stevens, "TCP/IP Illustrated, The Protocol", Vol I, Pearson Education, 1st Edition, 2006.
- 3. Behrouz A. Farouzon, "TCP/IP Protocol Suite, 3rd edition, Tata McGraw Hill, 2007

INT18R322		R PROGR	RAMMING		L 3	T 0	P 0	C 3	
Prerequisite	Nil					<u> </u>			
Course Category	Open Electi	ve							
Course Type	Theory								
Objective(s)	<ul> <li>Und</li> <li>Why</li> <li>Troi</li> <li>Gair</li> <li>Get</li> </ul>	<ul> <li>Understand what R is and what it can be used for</li> <li>Why would you choose R over another tool</li> <li>Troubleshoot software installs (keep your fingers crossed)</li> <li>Gain familiarity with using R from within the RStudio IDE</li> <li>Get to know the basic syntax of R functions</li> <li>Be able to install and load a package into your R library</li> </ul>							
Course Outo		ible to install a	and load a pack	tage into you	r K IIbi	ary			
Course Oute		themselves w	ith R and the R	Studio IDE					
CO2			arious forms of						
CO3			for R and im		nction	package	es into	the R	
CO4	Import, revi	ew, manipula	te and summar	ize data-sets	in R				
CO5	manipulatio	n and statistic	bilities of the al analyses.	language as	a prod	luctivity	tool for	r data	
Mapping of	COs with AB	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6		
CO1	M	Н	Н						
CO2	M	Н							
CO3									
CO4	Н	M					M		
CO5			Н						
Course Toni	a(a)								

# **UNIT I: INTRODUCTION**

Getting R, R Version, 32-bit versus 64-bit, The R Environment, Command Line Interface, RStudio, Revolution Analytics RPE, R Packages: Installing Packages, Loading Packages, Building a Package R Basics: Basic Math, Variables, Data Types, Vectors, Calling Functions, Function Documentation, Missing Data Advanced Data Structures: data frames, Lists, Matrices, Arrays

# **UNIT II: R DATA**

Reading Data into R: Reading CSVs, Excel Data, Reading from Databases, Data from Other Statistical Tools, R Binary Files, Data Included with R, Extract Data from Web Sites Statistical Graphics: Base Graphics, ggplot2

# **UNIT III: R FUNCTIONS & STATEMENTS**

Writing R Functions: Hello, World!, Function Arguments, Return Values, do.call Control Statements: if and else, switch, ifelse, Compound Tests Loops: for Loops, while Loops, Controlling Loops

### **UNIT IV: DATA MANIPULATION**

Group Manipulation: Apply Family, aggregate, plyr, data.table Data Reshaping: cbind and rbind, Joins, reshape2 Manipulating Strings: paste, sprint, Extracting Text, Regular

### UNIT V: R STATISTICS & LINEAR MODELING

Probability Distributions: Normal Distribution, Binomial Distribution, Poisson Basic Statistics: Summary Statistics, Correlation and Covariance, T-Tests 200, ANOVA Linear Models: Simple Linear Regression, Multiple Regression Generalized Linear Models: Logistic Regression, Poisson Model Diagnostics: Residuals, Comparing Models, Cross-Validation, Bootstrap, Stepwise Variable Selection

### **TEXT BOOK(S):**

1. Jared P. Lander, R for Everyone: Advanced Analytics and Graphics, Pearson Edu. Inc., 2nd Edition, 2017

- 1. Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis-With Exercises, Solutions and Applications in R, Springer, 2016
- 2. Pierre Lafaye de Micheaux, Rémy Drouilhet, Benoit Liquet, The R Software-Fundamentals of Programming and Statistical Analysis, Springer 2013
- 3. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, A Beginner's Guide to R (Use R) Springer 2009

Prerequisite Programming for Problem Solving (CSE18R171)  Course Category  Theory  Theory  Objective(s)  • To get a clear understanding of object-oriented concepts.  • To understand object oriented programming through C++.  • To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstractive encapsulation, and inheritance.  • To make the student to become aware of the Internet Principles, Basic Western Concepts, Mark up & Scripting Languages.  • To equip the student with the techniques of CGI, Socket and Server significant programming for online communication and computing  Course Outcome(s)  CO1 Understand the object-oriented concepts. To understand object oriented programming through C++.  CO2 Understand the object-oriented concepts. To understand object oriented programming through C++.  CO3 Understand the object-oriented concepts and utilize Java Graphical User Interface in program writing.  CO4 Understand database basics related to develop dynamic web applications and Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce software.						L	T	P	C		
Course Type	INT18R418	PROGE	RAMMIN(	G WITH C++ AN	D JAVA	3	3 0 0	0	3		
Course Type  Objective(s)  To get a clear understanding of object-oriented concepts.  To understand object oriented programming through C++.  To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstractive encapsulation, and inheritance.  To make the student to become aware of the Internet Principles, Basic W. Concepts, Mark up & Scripting Languages.  To equip the student with the techniques of CGI, Socket and Server significant programming for online communication and computing  Course Outcome(s)  CO1  Understand the object-oriented concepts. To understand object orient programming through C++.  Understand the role of inheritance, polymorphism, dynamic binding and genestructures in building reusable code.  CO3  Understand Java programming concepts and utilize Java Graphical User Interfation program writing.  CO4  Understand database basics related to develop dynamic web applications and Apply XML for designing web pages.  CO5  Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate to software systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO  SO1  SO2  SO3  SO4  SO5  SO6  CO1  M  H  H  H  M  M  CO4  H  M  CO4  H  M  CO5  H  M  M  CO5  M  H  M  M  CO5  M  H  M  M  CO6  M  H  M  M  CO6  M  H  M  M  CO7  M  M  M  CO7  CO7  CO7  CO7	Prerequisite	Programmi	ng for Prob	lem Solving (CSE	(18R171)						
Type  Objective(s)  • To get a clear understanding of object-oriented concepts.  • To understand object oriented programming through C++.  • To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstractive encapsulation, and inheritance.  • To make the student to become aware of the Internet Principles, Basic W. Concepts, Mark up & Scripting Languages.  • To equip the student with the techniques of CGI, Socket and Server signorgramming for online communication and computing  Course Outcome(s)  CO1  Understand the object-oriented concepts. To understand object orient programming through C++.  CO2  Understand the role of inheritance, polymorphism, dynamic binding and genest structures in building reusable code.  CO3  Understand Java programming concepts and utilize Java Graphical User Interfating program writing.  CO4  Understand database basics related to develop dynamic web applications and Apply XML for designing web pages.  CO5  Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate the software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO  SO1  M  H  H  H  CO2  H  H  H  H  CO3  M  CO4  H  M  CO4  H  M  CO5  H  M  CO5  M  CO5  M  M  CO5  M  CO5  M  CO5  M  M  CO6  M  M  CO7  CO7		Open Elect	ive								
Objective(s)	Course	Theory									
To understand object oriented programming through C++.     To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstractive encapsulation, and inheritance.     To make the student to become aware of the Internet Principles, Basic W. Concepts, Mark up & Scripting Languages.     To equip the student with the techniques of CGI, Socket and Server significant programming for online communication and computing.  Course Outcome(s)  CO1 Understand the object-oriented concepts. To understand object orient programming through C++.  CO2 Understand the role of inheritance, polymorphism, dynamic binding and genestructures in building reusable code.  CO3 Understand Java programming concepts and utilize Java Graphical User Interfain program writing.  CO4 Understand database basics related to develop dynamic web applications a Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO(SO) SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H H L L  CO2 H H H H H L  CO3 M H H H H L  CO3 M M H H H H L  CO4 H M M M M M M M M M M M M M M M M M M	Type										
CO1 Understand the object-oriented concepts. To understand object orient programming through C++.  CO2 Understand the role of inheritance, polymorphism, dynamic binding and gene structures in building reusable code.  CO3 Understand Java programming concepts and utilize Java Graphical User Interfain program writing.  CO4 Understand database basics related to develop dynamic web applications a Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce softwas systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H L  CO2 H H H H L  CO3 M M H H H L  CO4 H M M M L	•	<ul> <li>To und</li> <li>To de solution encaps</li> <li>To many</li> <li>Conce</li> <li>To equiprogram</li> </ul>	<ul> <li>To understand object oriented programming through C++.</li> <li>To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstraction, encapsulation, and inheritance.</li> <li>To make the student to become aware of the Internet Principles, Basic Web Concepts, Mark up &amp; Scripting Languages.</li> <li>To equip the student with the techniques of CGI, Socket and Server side</li> </ul>								
CO1 Understand the object-oriented concepts. To understand object orient programming through C++.  CO2 Understand the role of inheritance, polymorphism, dynamic binding and gene structures in building reusable code.  CO3 Understand Java programming concepts and utilize Java Graphical User Interfain program writing.  CO4 Understand database basics related to develop dynamic web applications a Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce softwas systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H L  CO2 H H H H L  CO3 M M H H H L  CO4 H M M M L	<b>Course Outc</b>	ome(s)									
CO2 Understand the role of inheritance, polymorphism, dynamic binding and gene structures in building reusable code.  CO3 Understand Java programming concepts and utilize Java Graphical User Interfain program writing.  CO4 Understand database basics related to develop dynamic web applications a Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H H L  CO2 H H H H L  CO3 M M L		Understand	•		epts. To u	understa	nd obj	ect ori	ented		
in program writing.  CO4 Understand database basics related to develop dynamic web applications at Apply XML for designing web pages.  CO5 Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate at software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H L  CO2 H H H H L  CO3 M L  CO4 H M M L	CO2	Understand	the role of	f inheritance, poly	morphism, d	ynamic	binding	and ge	eneric		
Apply XML for designing web pages.  CO5  Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate to software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO  SO1  SO2  SO3  SO4  SO5  SO6  CO1  M  H  H  CO2  H  H  CO3  CO4  H  M  L	CO3			ramming concepts	and utilize Ja	ava Gra _l	phical U	ser Inte	erface		
systems/websites that meet specified user needs and constraints. Evaluate a software system/websites produced for usability, efficiency and accuracy.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H H H L  CO2 H H H H L  CO3 M L  CO4 H M M L	CO4				develop dyn	amic w	eb appl	ications	s and		
CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         M         H         H         L           CO2         H         H         H         M           CO3         M         M         L           CO4         H         M         L		systems/we software sy	Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints. Evaluate the								
CO1         M         H         H         L           CO2         H         H         H           CO3         M         M           CO4         H         M         L		COs with AB	BET SOs								
CO2         H         H         H           CO3         M         M           CO4         H         M         L					SO4	SO5					
CO3         M           CO4         H         M           L         L		M		Н				L			
CO4 H M L			H		Н						
CO5		<u>H</u>	M								
Course Topic(s)				H	L			L			

# UNIT 1: INTRODUCTION TO OOP, CLASS & OBJECTS

Object Oriented Programming Paradigm- Basic Concepts of OOP- Benefits of OOP- Object Oriented Languages- Features of OOP- How OOP Differ from Procedure Oriented Programming-applications of OOP-a Simple C++ Program- structure of C++ Program-basic Data Types in C++- Operators in C++ - Scope Resolution Operator- Member Dereferencing Operators- memory 31 SE-Engg&Tech-SRM-2013 management operators- Introduction of Classes-Inline member functions-Objects - Arrays of Objects- Objects as Function Arguments-Static data member and static member functions - Constructors- Parameterized Constructors-

Default Argument constructors - Copy Constructors - Destructors - Friend functions.

### UNIT 2: POLYMORPHISM, TEMPLATES & EXCEPTION HANDLING

Introduction to Operator overloading- Rules for Operator overloading- overloading of binary and unary operators-Introduction to inheritance—Types of inheritance—Abstract Classes- new Operator and delete Operator- Pointers to Objects- this Pointer- Virtual Functions- Pure Virtual Functions- Introduction to Class Templates- Function Templates-Member Function Templates-Basics of Exception Handling- Types of exceptions- Exception Handling Mechanism- Throwing and Catching Mechanism- Rethrowing an Exception- Specifying Exceptions.

### **UNIT 3: JAVA PROGRAMMING**

An overview of Java – Data Types – Variables and Arrays – Operators – Control Statements – Classes – Objects – Methods – Inheritance – Packages – Abstract classes – Interfaces and Inner classes – Exception handling – Introduction to Threads – Multithreading – String handling – Streams and I/O – Applets.

## UNIT 4: WEBSITES BASICS, HTML 5, CSS 3, WEB 2.0

Web 2.0: Basics-RIA Rich Internet Applications – Collaborations tools – Understanding websites and web servers: Understanding Internet – Difference between websites and web server- Internet technologies Overview –Understanding the difference between internet and intranet; HTML and CSS: HTML 5.0, XHTML, CSS 3.

### **UNIT 5: CLIENT SIDE AND SERVER SIDE PROGRAMMING**

Java Script: An introduction to JavaScript–JavaScript DOM Model-Date and Objects,-Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript. Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies- Installing and Configuring Apache Tomcat WebServer;- DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example – JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by embedding JSP code.

### **TEXTBOOKS:**

- 1. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Prentice Hall, 5thEdition,2011.
- 2. Herbert Schildt, "Java-The Complete Reference", Eighth Edition, Mc Graw Hill Professional, 2011.

- 1.Stephen Wynkoop and John Burke "Running a Perfect Website", QUE, 2nd Edition,1999.
- 2. Chris Bates, "Web Programming Building Intranet Applications", 3rd Edition, Wiley Publications, 2009.
- 3. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.

INT18R419		VETWOR	K PROTOCO	OLS	L	T	P	C 3	
11(1101(41)	1	LIET WOL			3 0 0				
Prerequisite	Computer N	Vetworks (	CSE18R371)						
Course	Open Electi	ve							
Category									
Course	Theory	heory							
Type									
Objective(s)	It understan	understands the networking concepts and Multiple protocols types.							
Course Outo	ome(s)			-					
CO1	Understand	the exis	sting network	architecture 1	nodels	and a	nalyzes	their	
	performance	performance.							
CO2	Understand	the multip	le layers of the	protocol.					
CO3	Understand	the high s	peed network p	rotocols and de	sign iss	ues.			
CO4	Learn Netw	ork Securi	ty Technologie	s and Protocols					
CO5	To study va	rious proto	ocols in wireless	s LAN, MAN.					
Mapping of	COs with AB	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	SO5	j	SO6		
CO1	M	Н	Н						
CO2	M			Н			M		
CO3				Н					
CO4	Н	M		M			M		
CO5			Н						
Course Toni	a(a)	•	•		•		•		

# UNIT 1: FUNDAMENTALS OF NETWORKING STANDARDS AND PROTOCOLS

Network Communication Architecture and Protocols - OSI Network Architecture seven Layers Model - Definition and Overview of TCP/IP Protocols -TCP/IP Four Layers Architecture Model - Other Network Architecture Models: IBM SNA.

### **UNIT 2: ROUTED AND ROUTING PROTOCOLS**

Application Layer Protocols-Presentation Layer Protocols - Session Layer Protocols - Transport Layer Protocols - Network Layer Protocols - Data Link Layer Protocols - Routing Protocols - Multicasting Protocols - MPLS.

### **UNIT 3: SDN AND NETWORK MANAGEMENT PROTOCOLS**

Overview of ISDN – Channels – User access – Protocols Network management requirements – Network monitoring – Network control – SNMP V1, V2 and V3 – Concepts, MIBs – Implementation issues-RMON.

#### **UNIT 4: SECURITY AND TELEPHONY PROTOCOLS**

Network Security Technologies and Protocols - AAA Protocols - Tunneling Protocols - Security Protocols - Private key encryption - Data encryption system, public key encryption - RSA - Elliptic curve cryptography - Authentication mechanisms - Web security - Secured Routing Protocols - IP telephony - Voice over IP and VOIP Protocols - Signaling Protocols-Media/CODEC.

### **UNIT 5: NETWORK ENVIRONMENTS AND PROTOCOLS**

Wide Area Network and WAN Protocols - Frame relay - ATM - Broadband Access Protocols -

PPP Protocols - Local Area Network and LAN Protocols - Ethernet Protocols - Virtual LAN Protocols - Wireless LAN Protocols - Metropolitan Area Network and MAN Protocol - Storage Area Network and SAN Protocols.

# **TEXT BOOK**

- 1. Javvin, "Network Protocols", Javvin Technologies Inc., second edition, 2005
- 2. William Stallings, "Cryptography and Network Security", PHI, 2000.
- 3. Mani Subramanian, "Network Management-Principles and Practices", Addison Wesley, 2000.

- 1. William Stallings, "SNMP, SNMPV2, SNMPV3 and RMON1 and 2", 3rd Edition, Addison Wesley, 1999.
- 2. William Stallings, "Data and Computer Communications" 5th Edition, PHI, 1997.

INTELOD 420	HIGH SPEED NETWORKS					T	P	С	
INT18R420					3	0	0	3	
Prerequisite	Computer N	Vetworks	s (CSE18R371)			•			
Course	Open Electi	ive							
Category									
Course	Theory	heory							
Type		<del>-</del>							
Objective(s)	To highligh	o highlight the features of different technologies involved in High Speed							
	Networking	Networking and their performance.							
Course Outo	come(s)								
CO1	Students wi	ill get an	introduction abo	ut ATM and	l Frame re	lay.			
CO2	Enable to	know	techniques inv	olved to	support	real-tim	e traffic	and	
<u> </u>	congestion	control.							
CO3	Understand	the cond	cept of traffic ma	nagement.					
CO4	Understand	differen	t services in netw	ork.					
CO5			rovided with dif	ferent level	s of quali	ty of se	ervice (Q	.S) to	
	different ap								
Mapping of					1		T		
CO\SO	SO1	SO2	SO3	SO4	SO	5	SO6		
CO1	M	Н	Н						
CO2	M	Н							
CO3									
CO4	Н	M					M		
CO5			Н						
Course Topi	c(s)								
UNIT 1: HI	GH SPEED	NETWO	ORKS						

Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection - ATM Cell - ATM Service Categories - AAL. High Speed LAN's: Fast Ethernet - Gigabit Ethernet- Fiber Channel - Wireless LAN's, WiFi and WiMax Networks applications, requirements of Architecture 802.11. **UNIT** 2: **CONGESTION AND TRAFFIC MANAGEMENT** Queuing Analysis - Queuing Models - Single Server Queues - Effects of Congestion -Congestion Control - Traffic Management - Congestion Control in Packet Switching Networks Frame Relay Congestion Control. **ATM UNIT TCP CONGESTION CONTROL AND** TCP Flow control - TCP Congestion Control - Retransmission - Timer Management -Exponential RTO backoff - KARN's Algorithm - Window management - Performance of TCP over ATM. Traffic and Congestion control in ATM - Requirements - Attributes -Traffic Management Frame work, Traffic Control - ABR traffic Management - ABR rate control, RM cell formats - ABR Capacity allocations - GFR traffic management. **INTEGRATED** AND **DIFFERENTIATED SERVICES** Integrated Services Architecture - Approach, Components, Services- Queuing Discipline - FQ - PS - BRFQ - GPS - WFQ - Random Early Detection - Differentiated Services. UNIT 5: **PROTOCOLS FOR** OOS **SUPPORT** 9 Hours

RSVP - Goals & Characteristics, Data Flow, RSVP operations - Protocol Mechanisms - Multiprotocol Label Switching - Operations, Label Stacking - Protocol details - RTP - Protocol Architecture - Data Transfer Protocol RTCP.

TEXTBOOKS

1. William Stallings, "High speed networks and internet", Second Edition, Pearson Education,

2002.

- 1. Warland, Pravin Varaiya, "High performance communication networks", Second Edition, Jean Harcourt Asia Pvt. Ltd., , 2001.
- 2. Irvan Pepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.
- 3. Abhijit S. Pandya, Ercan Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press, New York., 2010

INT18R421	INT	RODUCTIO MANAG		AGE	L 3	T 0	P	C 3	
Prerequisite	Database M	Ianagement Sy		R371)	<u> </u>	10	U	] 3	
Course	Open Electi		`						
Category									
Course	Theory								
Type									
Objective(s)	• Descri	<ul> <li>Understand Storage Area Networks characteristics and components.</li> <li>Describe the challenges associated with data center networking and the need for switch network convergence.</li> </ul>							
	• Storag								
Course Outo	come(s)								
CO1		l describe chal							
CO2	Discuss di infrastructu	fferent types re.	of logical a	nd physical	comp	onents o	of a s	storage	
CO3		benefits of environments.		network sto	orage	options	for di	fferent	
CO4	Identify and	l analyzes the	common threa	ts in each do	main.				
CO5	Know abou	t the virtualiza	tion Techniqu	es.					
Mapping of	COs with AB	ET SOs							
CO\SO	SO1	SO2	SO3	SO4	SO5	)	SO6		
CO1	Н	Н	Н						
CO2	Н	M							
CO3				L					
CO4	M			M			M		
CO5	M	Н	Н						
Course Toni	a(a)								

# **UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY**

Review data creation and the amount of data being created and understand the value of data to business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

### **UNIT 2: STORAGE SYSTEMS**

Hardware and software components of the host environment - Key protocols and concepts used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications

### **UNIT 3: NETWORKED STORAGE**

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for long-term archiving solutions

### **UNIT 4: DATA CENTER**

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO -

Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies- key management tasks in a data center.

# **UNIT 5: VIRTUALIZATION**

Virtualization technologies – block-level and file-level virtualization technologies and Processes

### **TEXT BOOK**

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2010.

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- 2. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

# **HONOURS ELECTIVES**

INT18R422	ADVANCED NETWORKS			L	T	P	C			
11\1110K422		ADVANC	ED NET WOR	ıks	3	3 1 0				
Prerequisite	Computer	Networks (	CSE18R371)							
Course	Honours E	onours Elective								
Category										
Course	Theory									
Type										
<b>Objective(s)</b>	• To	explain Qo	S requirements	and compare	different	approac	hes to (	λοS.		
	• To	appreciate 1	need for high sp	oeed networks	<b>;</b>					
	• To	<ul> <li>To identify reliability issues and provide solutions</li> </ul>								
<b>Course Outc</b>	ome(s)									
CO1	Gain an u	nderstanding	g of advanced i	networks conc	ept.					
CO2	Describe t	he principle:	s behind the en	hancement in	networkii	ng				
CO3	Know the	recent devel	lopment in netw	vorks						
CO4	Know the	optical netw	ork design							
CO5	Know the	virtualizatio	n.							
Mapping of	COs with A	BET SOs					_			
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO1	M	Н	Н							
CO2	M	Н								
CO3										
CO4	Н	M					M			
CO5			H							

### Course Topic(s)

### **UNIT 1: INTERNETWORKING**

IPv6 - Design issues - Scalability - Addressing - Headers - Routing - Auto configuration - Transition from IPv4 to IPv6 - Interoperability - QoS in IPv6 - Multicast support - ICMPv6 - Security in IPv6

### **UNIT 2: QUALITY OF SERVICE**

QoS taxonomy - Resource allocation - Scheduling - Queuing disciplines - Delay Analysis Integrated services - Differentiated services - RSVP.

### **UNIT 3: MPLS AND VPN**

MPLS Architecture - MPLS to GMPLS - Traffic engineering with MPLS - QoS -Network recovery and restoration with MPLS – VPN L2 – VPN L3 .

### **UNIT 4: OPTICAL NETWORKS**

Photonic Packet switching - WDM network design - Introduction to optical networks -optical layer - SONET/SDH - Optical packet switching - Client layers - Signaling protocols and network operation

### **UNIT 5: SOFTWARE DEFINED NETWORKING**

Introduction to SDN - Network Function Virtualization - Data Plane - Control Plane - SDN software stack - Data center Traffic Management

### **TEXT BOOKS:**

- 1. Larry L. Peterson, Bruce S. Davie, —Computer Networks: A Systems Approachl, Fifth Edition, Elsevier/Morgan Kaufmann Publishers, 2011.
- 2. Bruce S. Davie, Adrian Farrel, —MPLS: Next Steps, Morgan Kaufmann Publishers, 2011.
- 3. Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, "Optical Networks A Practical Perspective", Third Edition, Morgan Kaufmann, 2010.

- 1. William Stallings, "High-speed networks and internets", Second Edition Pearson Education India, 2002.
- 3. Ying-Dar Lin , Ren-Hung Hwang , Fred Baker , "Computer Networks: An Open Source Approach", McGraw-Hill Higher Education, 2011.

Prerequisite Artificial Intelligence (INT18R311)  Course Category  Course Theory  Objective(s)  The structure of agents  The learning mechanisms of agents  The communication and cooperation within agents  The design of agents  Course Outcome(s)  CO1 Implement a computational agent with various searching techniques  CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents  CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a mult agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	INT18R423	ACENT	DACED IN	TELLICENT S	VCTEMC	L	T	P	C			
Course Category  Course Type Objective(s)  The structure of agents  The learning mechanisms of agents  The communication and cooperation within agents  The design of agents  Course Outcome(s)  CO1 Implement a computational agent with various searching techniques  CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents  CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a mult agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	11111011423	AGENT	DASED IN	TELLIGENT S	ISIENIS	3	1	0	4			
Course Type  Objective(s)  The structure of agents  The learning mechanisms of agents  The communication and cooperation within agents  The design of agents  Course Outcome(s)  CO1 Implement a computational agent with various searching techniques  CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents  CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a mult agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	Prerequisite	Artificial In	itelligence (	INT18R311)								
Theory	Course	Honours El	Ionours Elective									
Type Objective(s)  • The structure of agents • The learning mechanisms of agents • The communication and cooperation within agents • The design of agents  Course Outcome(s)  CO1 Implement a computational agent with various searching techniques  CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents  CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a multi-agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	Category											
Objective(s)  ■ The structure of agents ■ The learning mechanisms of agents ■ The communication and cooperation within agents ■ The design of agents  Course Outcome(s)  CO1 Implement a computational agent with various searching techniques CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents CO3 Use the learning mechanisms for an artificial agent. CO4 Execute different communication and co-operation methodologies in a mult agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	Course	Theory										
<ul> <li>The learning mechanisms of agents</li> <li>The communication and cooperation within agents</li> <li>The design of agents</li> <li>CO1 Implement a computational agent with various searching techniques</li> <li>CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents</li> <li>CO3 Use the learning mechanisms for an artificial agent.</li> <li>CO4 Execute different communication and co-operation methodologies in a multiagent setup.</li> <li>CO5 Know about the agents design.</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> </ul>	Type											
<ul> <li>The communication and cooperation within agents</li> <li>The design of agents</li> <li>Course Outcome(s)</li> <li>CO1 Implement a computational agent with various searching techniques</li> <li>CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents</li> <li>CO3 Use the learning mechanisms for an artificial agent.</li> <li>CO4 Execute different communication and co-operation methodologies in a multiagent setup.</li> <li>CO5 Know about the agents design.</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> </ul>	Objective(s)	• The	structure of	fagents								
<ul> <li>The design of agents</li> <li>Course Outcome(s)</li> <li>CO1 Implement a computational agent with various searching techniques</li> <li>CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents</li> <li>CO3 Use the learning mechanisms for an artificial agent.</li> <li>CO4 Execute different communication and co-operation methodologies in a multiagent setup.</li> <li>CO5 Know about the agents design.</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> </ul>		• The	e learning m	echanisms of ag	ents							
Course Outcome(s)  CO1 Implement a computational agent with various searching techniques  CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents  CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a multi-agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6		• The	e communic	ation and cooper	ation within a	igents						
CO1       Implement a computational agent with various searching techniques         CO2       Apply the reasoning mechanisms of proposition and predicate logic to agents         CO3       Use the learning mechanisms for an artificial agent.         CO4       Execute different communication and co-operation methodologies in a multi-agent setup.         CO5       Know about the agents design.         Mapping of COs with ABET SOs         CO\SO       SO1       SO2       SO3       SO4       SO5       SO6		• The	1									
CO2 Apply the reasoning mechanisms of proposition and predicate logic to agents CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a multi- agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	Course Outco											
CO3 Use the learning mechanisms for an artificial agent.  CO4 Execute different communication and co-operation methodologies in a multiagent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	CO1	Implement	a computati	onal agent with v	various search	ing tec	hniques					
CO4 Execute different communication and co-operation methodologies in a multi- agent setup.  CO5 Know about the agents design.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6	CO2	Apply the re	easoning me	echanisms of pro	position and	predicat	te logic t	o agent	S			
agent setup.           CO5         Know about the agents design.           Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6	CO3	Use the lear	ming mecha	nisms for an arti	ficial agent.							
CO5         Know about the agents design.           Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6	CO4	Execute dit	fferent com	munication and	co-operation	metho	dologies	s in a 1	multi-			
Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6		agent setup.	•									
CO\SO         SO1         SO2         SO3         SO4         SO5         SO6				design.								
		COs with AB	ET SOs									
	CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
СОГ	CO1			Н								
CO2 M H	CO2	M	Н									
CO3 M H H	CO3			M	Н	Н						
CO4 H M M	CO4	Н	M					M				
CO5 M M	CO5			M	M							

# **UNIT 1: INTRODUCTION**

Agents as a paradigm for software engineering - Agents as a tool for understanding human societies- Intelligent Agent: Agents and Objects - Agents and Expert Systems - Agents as Intentional Systems - Abstract Architectures for Intelligent Agents - How to Tell an Agent What to Do

### **UNIT 2: LEARNING IN AGENTS**

Proportional case - Handling variables and qualifiers - Dealing with intractability - Reasoning with horn clauses - Procedural control of reasoning - Rules in production - Reasoning with Higher order Logics.

# **UNIT 3: COMMUNICATION AND COOPERATION IN AGENTS**

Software tools for ontology - OWL - XML - KIF - Speech acts - Cooperative Distributed Problem Solving - Task Sharing and Result Sharing - Result Sharing - Combining Task and Result Sharing - Handling Inconsistency - Coordination - Multi agent Planning and Synchronization

# **UNIT 4: DEVELOPING INTELLIGENT AGENT SYSTEMS**

Situated Agents: Actions and Percepts - Proactive and Reactive Agents: Goals and Events - Challenging Agent Environments: Plans and Beliefs - Social Agents - Agent Execution Cycle - Deciding on the Agent Types - Grouping functionalities - Review Agent Coupling - Acquaintance Diagrams - Develop Agent Descriptors

# **UNIT 5: APPLICATIONS**

Agent for workflow and business process management- Mobile agents - Agents for distributed systems - agents for information retrieval and management - agents for electronic commerce - agent for human- computer interface - agents for virtual environments - agents for social simulation.

# **TEXT BOOKS:**

- 1. Michael Wooldridge, "An Introduction to Multi Agent Systems", Second Edition, John Wiley and Sons, 2009.
- 2. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Pearson Education, 2009.
- 3. Lin Padgham, Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", Wiley publications, 2005

# **REFERENCES:**

- 1 Ronald Brachman, Hector Levesque, "Knowledge Representation and Reasoning", The Morgan Kaufmann Series in Artificial Intelligence 2004
  - 2. Arthur B. Markman, "Knowledge Representation", Lawrence Erlbaum Associates, 1998

Prerequisite Programming for Problem Solving (CSE18R171)  Course Category  Course Type  Objective(s)  Learn about the statistical modeling and classification for NLP  Learn the basic techniques of information retrieval  Know about the basics of text mining  Learn the generic issues in speech processing and applications relevanatural language generation  Course Outcome(s)  CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	DIT10D424	COM			ICTLCC	L	T	P	C			
Course Category Course Type Objective(s)  • Learn about the statistical modeling and classification for NLP • Learn the basic techniques of information retrieval • Know about the basics of text mining • Learn the generic issues in speech processing and applications relevanatural language generation  Course Outcome(s)  CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications related to text mining.  CO6 So	INT18R424	COM	IPUTATIO	NAL LINGUI	181108	3	1	0	4			
Course   Theory	Prerequisite	Programmii	ng for Proble	em Solving (C	SE18R171)							
Theory	Course	Honours Ele	ective									
Type Objective(s)  • Learn about the statistical modeling and classification for NLP • Learn the basic techniques of information retrieval • Know about the basics of text mining • Learn the generic issues in speech processing and applications relevanatural language generation  Course Outcome(s)  CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	Category											
<ul> <li>Objective(s)         <ul> <li>Learn about the statistical modeling and classification for NLP</li> <li>Learn the basic techniques of information retrieval</li> <li>Know about the basics of text mining</li> <li>Learn the generic issues in speech processing and applications relevanatural language generation</li> </ul> </li> <li>Course Outcome(s)         <ul> <li>CO1 Develop applications related to speech processing.</li> <li>CO2 To know about the basic techniques of information retrieval.</li> <li>CO3 Develop applications related to text mining.</li> <li>CO4 Know about the generic issues in speech processing.</li> <li>CO5 Develop applications relevant to natural language generation</li> </ul> </li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> <li>CO1 M H</li> </ul>	Course	Theory	heory									
<ul> <li>Learn the basic techniques of information retrieval</li> <li>Know about the basics of text mining</li> <li>Learn the generic issues in speech processing and applications relevanatural language generation</li> <li>Course Outcome(s)</li> <li>CO1 Develop applications related to speech processing.</li> <li>CO2 To know about the basic techniques of information retrieval.</li> <li>CO3 Develop applications related to text mining.</li> <li>CO4 Know about the generic issues in speech processing.</li> <li>CO5 Develop applications relevant to natural language generation</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> <li>CO1 M H</li> </ul>			-									
<ul> <li>Know about the basics of text mining</li> <li>Learn the generic issues in speech processing and applications relevanatural language generation</li> <li>Course Outcome(s)</li> <li>CO1 Develop applications related to speech processing.</li> <li>CO2 To know about the basic techniques of information retrieval.</li> <li>CO3 Develop applications related to text mining.</li> <li>CO4 Know about the generic issues in speech processing.</li> <li>CO5 Develop applications relevant to natural language generation</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> <li>CO1 M H</li> </ul>	Objective(s)	• Lear	rn about the	statistical mod	eling and classi	ificatio	n for NL	P				
Learn the generic issues in speech processing and applications relevanatural language generation      Course Outcome(s)      CO1 Develop applications related to speech processing.      CO2 To know about the basic techniques of information retrieval.      CO3 Develop applications related to text mining.      CO4 Know about the generic issues in speech processing.      CO5 Develop applications relevant to natural language generation      Mapping of COs with ABET SOs      CO\SO SO1 SO2 SO3 SO4 SO5 SO6      CO1 M H		• Lea	• Learn the basic techniques of information retrieval									
ratural language generation  Course Outcome(s)  CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H		• Kno	Know about the basics of text mining									
Course Outcome(s)  CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H		• Lea	• Learn the generic issues in speech processing and applications relevant to									
CO1 Develop applications related to speech processing.  CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H		natu										
CO2 To know about the basic techniques of information retrieval.  CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	<b>Course Outc</b>	/										
CO3 Develop applications related to text mining.  CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	CO1											
CO4 Know about the generic issues in speech processing.  CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	CO2	To know ab	out the basic	techniques of	f information re	trieval	•					
CO5 Develop applications relevant to natural language generation  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 M H	CO3	Develop ap	plications rel	lated to text m	ining.							
Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         M         H                   SO6	CO4	Know abou	t the generic	issues in spee	ch processing.							
CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         M         H               SO5         SO6				levant to natur	al language ger	neration	ı					
CO1 M H	Mapping of C	COs with AB	ET SOs									
	CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
CO2   M   H	CO1	M	Н									
002 111	CO2	M	Н									
CO3 H	CO3				Н							
CO4 H M M	CO4	Н	M					M				
CO5 H	CO5			Н								

# **UNIT 1: NATURAL LANGUAGE PROCESSING**

Linguistic background - spoken language input and output technologies - Written language input - Mathematical methods - Statistical modeling and classification - Finite state methods: Grammar for NLP - Parsing - Semantic interpretation: Semantics and logical form - Ambiguity Resolution - Other strategies for semantic interpretation - Word Sense Disambiguation - Named Entity Recognition

# **UNIT 2: INFORMATION RETRIEVAL**

Information Retrieval architecture - Indexing - Storage - Compression techniques - Retrieval approaches - Evaluation - Search Engines - Commercial search Engine features - comparison - Performance measures - Document processing - NLP based Information Retrieval - Information Extraction - Vector Space Model

# **UNIT 3: TEXT MINING**

Categorization: Extraction based Categorization - Clustering - Hierarchical clustering - Flat Clustering - Document classification and routing - Finding and organizing answers from text search - Categories and clusters for organizing retrieval results - Text Categorization - Efficient summarization using lexical chains - Pattern extraction

### **UNIT 4: GENERIC ISSUES**

Multilinguality - Multilingual Information Retrieval and Speech Processing - Multimodality-Text and Images - Modality Integration - Transmission and storage - Speech coding - Evaluation

of systems - Human factors and user acceptability.

# **UNIT 5: APPLICATIONS**

Machine translation - Transfer metaphor - Interlingua and statistical approaches - Discourse processing - Dialog and conversational agents - Natural language generation - Surface Realization and discourse planning

### **TEXT BOOKS:**

- 1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Pearson Education, 2009.
- 2. Ronald Cole, J.Mariani, et.al, "Survey of the state of the art in human language Technology", Cambridge University Press, 1997.
- 3. Michael W.Berry, "Survey of Txt Mining: Clustering, Classification and Retrieval", Springer Verlag, 2004.

# **REFERENCES:**

- 1. James Allen, "Natural Language Understanding", Second Edition, Pearson Education, 2008.
- 2. Gerald J.Kowalski, Mark. T. Maybury, "Information Storage and Retrieval systems", Kluwer Academic Publishers, 2000.
- 3. Tomek Strzalkowski, "Natural Language Information Retrieval", Kluwer Academic Publishers, 2009.

Prerequisite Nil  Course Category  Course Theory Type  Objective(s)  To gain knowledge about modern technology for learning.  To be acquainted with e-Learning Tools.  To learn technologies involved in e-learning application development.  To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H H H M M M M M M M M M M M M M M M	INT18R425	F	I FADNINC	TECHNIOU	FC	L	T	P	C		
Course Category  Course Type  Objective(s)  To gain knowledge about modern technology for learning.  To be acquainted with e-Learning Tools.  To learn technologies involved in e-learning application development.  To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H L H H  CO2 M H L M H  CO3 L M M H M M M M M M M M M M M M M M M M			LEARINING	TECHNIQU	LS	3	1	0	4		
Category         Course Type       Theory         Objective(s)          • To gain knowledge about modern technology for learning.         • To be acquainted with e-Learning Tools.         • To learn technologies involved in e-learning application development.         • To become aware of the current business potential of e-learning based business         Course Outcome(s)       CO1       Work with technologies involved in e-Learning Applications         CO2       Design and Develop e-Learning Application         CO3       Know about the E-Learning tools.         CO4       Develop web based E-learning methods.         CO5       Know about the learning methodology.         Mapping of COs with ABET SOs         CO\SO       SO1       SO2       SO3       SO4       SO5       SO6         CO1       H       L       H       H       CO2       M       H       H       H       CO3       L       M       M         CO4       M       M       M       M       M       M       M	Prerequisite	Nil									
Course Type  Objective(s)  To gain knowledge about modern technology for learning.  To be acquainted with e-Learning Tools.  To learn technologies involved in e-learning application development.  To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H H H H H H H H H H CO3  CO3 L M M M M M M M M M M M M M M M M M M	Course	Honours El	ective								
Type Objective(s)  • To gain knowledge about modern technology for learning. • To be acquainted with e-Learning Tools. • To learn technologies involved in e-learning application development. • To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H H H  CO2 M H H L M H  CO3 L M M M M M M M M	Category										
Objective(s)  To gain knowledge about modern technology for learning.  To be acquainted with e-Learning Tools.  To learn technologies involved in e-learning application development.  To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H H  CO2 M H H L H  CO3 L M M M M M M M	Course	Theory									
<ul> <li>To be acquainted with e-Learning Tools.</li> <li>To learn technologies involved in e-learning application development.</li> <li>To become aware of the current business potential of e-learning based business</li> <li>Course Outcome(s)</li> <li>CO1 Work with technologies involved in e-Learning Applications</li> <li>CO2 Design and Develop e-Learning Application</li> <li>CO3 Know about the E-Learning tools.</li> <li>CO4 Develop web based E-learning methods.</li> <li>CO5 Know about the learning methodology.</li> <li>Mapping of COs with ABET SOs</li> <li>CO\SO SO1 SO2 SO3 SO4 SO5 SO6</li> <li>CO1 H L H H</li> <li>CO2 M H H H</li> <li>CO3 L M H</li> <li>CO4 M M M M M</li> </ul>	Type	_									
To learn technologies involved in e-learning application development.     To become aware of the current business potential of e-learning based business      Course Outcome(s)      CO1    Work with technologies involved in e-Learning Applications     CO2    Design and Develop e-Learning Application      CO3     Know about the E-Learning tools.      CO4    Develop web based E-learning methods.      CO5    Know about the learning methodology.      Mapping of COs with ABET SOs      CO\SO     SO1     SO2     SO3     SO4     SO5     SO6      CO1     H	Objective(s)	• To g	gain knowledg	ge about mode	rn technology	for lea	rning.				
● To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H L H		• To b	e acquainted	with e-Learnir	ng Tools.		_				
• To become aware of the current business potential of e-learning based business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H H  CO2 M H H L H  CO3 L M M H M M M M M M		• To 1	earn technolog	gies involved	in e-learning a	pplicat	ion deve	lopmer	ıt.		
business  Course Outcome(s)  CO1 Work with technologies involved in e-Learning Applications  CO2 Design and Develop e-Learning Application  CO3 Know about the E-Learning tools.  CO4 Develop web based E-learning methods.  CO5 Know about the learning methodology.  Mapping of COs with ABET SOs  CO\SO SO1 SO2 SO3 SO4 SO5 SO6  CO1 H L H L H  CO2 M H H L H  CO3 L M M M M M M M			• • • • • • • • • • • • • • • • • • • •								
CO1 Work with technologies involved in e-Learning Applications CO2 Design and Develop e-Learning Application CO3 Know about the E-Learning tools. CO4 Develop web based E-learning methods. CO5 Know about the learning methodology.  Mapping of COs with ABET SOs CO\SO SO1 SO2 SO3 SO4 SO5 SO6 CO1 H L H H H H H CO2 M H H H H CO3 L M M M M M M M M M M M M M M											
CO2 Design and Develop e-Learning Application CO3 Know about the E-Learning tools. CO4 Develop web based E-learning methods. CO5 Know about the learning methodology.  Mapping of COs with ABET SOs CO\SO SO1 SO2 SO3 SO4 SO5 SO6 CO1 H L H H H H H H CO2 M H H M M M M M M M M	Course Outo	come(s)									
CO3         Know about the E-Learning tools.           CO4         Develop web based E-learning methods.           CO5         Know about the learning methodology.           Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         H         L         H         H         CO2         M         H         H         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         SO5         SO5         SO6	CO1	Work with	technologies i	nvolved in e-I	earning Appl	ication	S				
CO4         Develop web based E-learning methods.           CO5         Know about the learning methodology.           Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         H         L         H         H         H         CO2         M         H         H         H         CO3         L         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M	CO2	Design and	Develop e-Le	arning Applic	ation						
CO5         Know about the learning methodology.           Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         H         L         H         H         CO2         M         H         H         H         CO3         L         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M	CO3	Know abou	t the E-Learni	ng tools.							
Mapping of COs with ABET SOs           CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         H         L         H         H         H         CO2         M         H         H         H         CO3         L         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <td>CO4</td> <td>Develop we</td> <td>b based E-lea</td> <td>rning methods</td> <td>S.</td> <td></td> <td></td> <td></td> <td></td>	CO4	Develop we	b based E-lea	rning methods	S.						
CO\SO         SO1         SO2         SO3         SO4         SO5         SO6           CO1         H         L         H         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —	CO5	Know abou	t the learning	methodology.							
CO1         H         L         H           CO2         M         H         H           CO3         L         M           CO4         M         M	Mapping of	COs with AB	ET SOs								
CO2         M         H         H         H         CO3         L         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <td>CO\SO</td> <td>SO1</td> <td>SO2</td> <td>SO3</td> <td>SO4</td> <td>SO5</td> <td></td> <td>SO6</td> <td></td>	CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO3         L         M           CO4         M         M	CO1	Н	L	Н							
CO4 M M	CO2	M	Н		Н						
	CO3			L	M						
007	CO4	M	M					M			
COS   H   M   H	CO5			Н	M						

# **UNIT 1: INTRODUCTION**

Definition – Benefits – Challenges & opportunities- Developing E-learning-E-learning approachesE-learning components-Synchronous and asynchronous e-learning-Quality of e-learning-Blended learning- ROI metrics & evaluation – E-Learning cycle – Learning strategy – Business drivers – Elearning strategy.

### **UNIT 2: DESIGN**

Identifying and organizing course content-Needs analysis- Analyzing the target audienceIdentifying course content-Defining learning objectives-Defining the course sequence-Defining instructional, media, evaluation and delivery strategies-Defining instructional methods, Defining the delivery strategy, Defining the evaluation strategy. Instructional design — Design issues — Types of learning engagements — Blended learning — Team — Infra structure — Vendor relationships.

### **UNIT 3: CREATING INTERACTIVE CONTENT**

Multi-channel delivery – Learner support – Developing curriculum – E-learning standards – Content development process- Creating storyboards-Structure of an interactive e-lesson Techniques for presenting content-Integrating media elements-Courseware development Authoring tools-Types of authoring tools-Selecting an authoring tool.

# **UNIT 4: WEB BASED TRAINING**

Definition - Need for web based training - Choosing an approach - Kind of courses -

Technical standards – Metaphors – Course framework – registration – Running the course – resources – Feedback – Access - Collaborative learning- Moodle and other open-source solutions - E-learning methods.

# **UNIT 5: LEARNING METHODOLOGY**

Organizing learning sequences – Common lesson structures – Creating building blocks – Designing learning sequences – Learning activities – Test and exercise learning – Planning tests – Selecting questions – Sequencing test questions – Feedback – Improve testing – Prevent cheating.

# **TEXT BOOKS:**

- 1. Clark, R. C. and Mayer, R. E., "eLearning and the Science of Instruction". PHI 3rd edition, 2011
- 2. Means, B., Toyama, Y., and Murphy, R. "Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies", 2010

### **REFERENCES:**

- 1 Crews, T. B., Sheth, S. N., and Horne, T. M "Understanding the Learning Personalities of Successful Online Students" Educause Review. Jan/Feb 2014.
- 2. Madhuri Dubey, Effective "E-learning Design, Development and Delivery", University Press 2011.

INT18R426	HET	EROGENE	OUS COMPI	UTING	L	T	P	C			
					3	1	0	4			
Prerequisite	Computer A	Architecture a	and Organizat	ion (CSE17R17	(4)						
Course	Honours El	onours Elective									
Category											
Course	Theory	heory									
Type											
Objective(s)	• To 1	To learn about the development of massively parallel systems									
	To learn about the challenges in heterogeneous processing systems										
		T									
		Learn to provide effective parallel solutions for GPGPU architectures									
Course Outcome(s)											
CO1	Identify par	Identify parallelism in an application									
CO2	Choose the	right parallel	processing p	aradigm for a g	iven pr	oblem					
CO3	Devise solu	tions for an a	application on	a heterogeneou	ıs mult	i-core pl	atform				
CO4	Program us	ing CUDA a	nd Open MP								
CO5	Know abou	Know about the effective parallel solutions for GPGPU architectures									
Mapping of COs with ABET SOs											
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
CO1	M	Н	Н								
CO2	M	Н									
CO3											
CO4	Н	M					M				
CO5			Н								
Course Toni	c(c)										

# **UNIT 1: PARALLEL COMPUTING BASICS**

Importance of parallelism – Processes, tasks and threads - Modifications to von-Neumann model – ILP, TLP - Parallel hardware – Flynns classification – Shared memory and distributed memory architectures - Cache Coherence - Parallel software – Performance – Speedup and scalability – Massive parallelism - GPUs - GPGPUs

# **UNIT 2: SHARED MEMORY PROGRAMMING WITH OpenMP**

OpenMP program structure - OpenMP Clauses and directives - Scheduling primitives - Synchronization primitives - Performance issues with caches - Case study - Tree Search

### **UNIT 3: PROGRAMMING GPUS**

GPU architectures - Data parallelism - CUDA Basics - CUDA program structure - Threads, Blocks, Grids - Memory handling

### **UNIT 4: PROGRAMMING WITH CUDA**

Parallel patterns - Convolution - Prefix sum - Sparse matrix-vector multiplication - Imaging case study

### UNIT 5: OTHER GPU PROGRAMMING PLATFORMS

 $Introduction\ to\ Open\ CL-Open\ ACC-C++AMP-Thrust-Programming\ Heterogeneous\ clusters-CUDA\ and\ MPI$ 

### **TEXT BOOKS:**

- 1. Peter Pacheco, —Introduction to parallel programming, Morgan Kauffman, 2011.
- 2. David B. Kirk, Wen-mei W. Hwu, —Programming massively parallel processors, Morgan

Kauffman, 2013, 2nd Edition
REFERENCES:  1. Shane Cook, —CUDA Programming – A developers guide to parallel computing with GPUsl, Morgan Kauffman, 2013.  2. B.R. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, — Heterogeneous computing with OpenCLl, Morgan Kauffman, 2012.

INT18R427	1	OATTEDN	RECOGNIT	ION	L	T	P	C		
IN116K42/	1	ALLENN	KECOGNII	ION	3	1	0	4		
Prerequisite	Data Warel	nousing and	l Mining (INT	18R353)						
Course	Honours El	Ionours Elective								
Category										
Course	Theory									
Type		·								
Objective(s)	• To 1	To know about supervised and unsupervised Learning.								
	To study about feature extraction and structural pattern recognition.									
	• To 6	To explore different classification models.								
	• To 1	To learn about fuzzy pattern classifiers and perception								
Course Outcome(s)										
CO1	Classify the	Classify the data and identify the patterns								
CO2	Extract feat	Extract feature set and select the features from given data set.								
CO3	Learn abou	Learn about feature extraction and structural pattern recognition								
CO4	Know abou	Know about the different classification models								
CO5	Know abou	it fuzzy pat	tern classifiers	and perception						
Mapping of COs with ABET SOs										
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6			
CO1	M	Н	H				L			
CO2	M						M			
CO3			M		Н					
CO4	Н	M	L				M			
CO5			Н		M		Н			
Course Toni	o(c)					-				

### **UNIT 1: PATTERN CLASSIFIER**

Overview of Pattern recognition – Discriminant functions – Supervised learning – Parametric estimation – Maximum Likelihood Estimation – Bayesian parameter Estimation – Problems with Bayes approach – Pattern classification by distance functions – Minimum distance pattern classifier.

### **UNIT 2: CLUSTERING**

Clustering for unsupervised learning and classification – Clustering concept – C Means algorithm – Hierarchical clustering – Graph theoretic approach to pattern Clustering – Validity of Clusters.

### UNIT 3: FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION

KL Transforms – Feature selection through functional approximation – Binary selection - Elements of formal grammars - Syntactic description - Stochastic grammars - Structural representation.

### UNIT 4: HIDDEN MARKOV MODELS AND SUPPORT VECTOR MACHINE

State Machines – Hidden Markov Models – Training – Classification – Support vector Machine – Feature Selection.

### **UNIT 5: RECENT ADVANCES**

Fuzzy logic – Fuzzy Pattern Classifiers – Pattern Classification using Genetic Algorithms – Case Study Using Fuzzy Pattern Classifiers and Perception.

# **TEXT BOOKS:**

- 1. M. Narasimha Murthy and V.Susheela Devi, —Pattern Recognition^{||}, Springer 2011. 2. S.Theodoridis and K.Koutroumbas, —Pattern Recognition^{||}, 4th Edition., Academic Press, 2009 **REFERENCES:**
- 1.Robert J.Schalkoff, —Pattern Recognition Statistical, Structural and Neural Approaches, John Wiley & Sons Inc., New York, 1992.
- 2. C.M.Bishop,—Pattern Recognition and Machine Learning, Springer, 2006.
- 3. R.O.Duda, P.E.Hart and D.G.Stork, —Pattern Classification, John Wiley, 2001.
- 4. Andrew Webb, —Stastical Pattern Recognition, Arnold publishers, London, 1999.

INIT10D // 20	MIC	1141 174 <b>T</b>	ION TECHN	IOUES	L	T	P	C			
INT18R428	VIS	UALIZA I	ION TECHN	IQUES	3	1	0	4			
Prerequisite	Artificial In	ntelligence (	INT18R311)								
Course	Honours El	ective									
Category											
Course	Theory	neory									
Type		-									
Objective(s) • To learn about the importance of data visualization.											
To know the different types of visualization techniques.											
	• To 0	To create various visualizations									
Course Outcome(s)											
CO1	Compare va	Compare various visualization techniques.									
CO2	Design crea	Design creative visualizations									
CO3	Apply visua	alization ov	er different ty	pes of data.							
CO4	Study abou	t types of vi	sualization.								
CO5	Create various visualizations										
Mapping of COs with ABET SOs											
CO\SO	SO1	SO2	SO3	SO4	SO5		SO6				
CO1	M	Н	Н				Н				
CO2	M	Н		M	M						
CO3	Н						M				
CO4	Н	M		L	Н		M				
CO5			Н				Н				
Course Topi	c(s)										

### **UNIT 1: INTRODUCTION**

Introduction – Issues – Data Representation – Data Presentation – Common Mistakes in design.

# **UNIT 2: FOUNDATIONS FOR DATA VISUALIZATION**

Visualization stages – Experimental Semiotics based on Perception Gibson_s Affordance theory – A Model of Perceptual Processing – power of visual perception-Types of Data-visualization and data objects.

### **UNIT 3: COMPUTER VISUALIZATION**

Non-Computer Visualization – Computer Visualization: Exploring Complex Information Spaces – Fisheye Views – Applications – Comprehensible Fisheye views – Fisheye views for 3D data – Interacting with visualization

### UNIT 4: MULTIDIMENSIONAL VISUALIZATION

One Dimension – Two Dimensions – Three Dimensions – Multiple Dimensions – Trees – Web Works – Data Mapping: Document Visualization – Workspaces.

# **UNIT 5: CASE STUDIES**

Small interactive calendars – Selecting one from many – Web browsing through a key hole – Communication analysis – Archival analysis

### **TEXT BOOKS**:

- 1. Colin Ware, —Information Visualization Perception for Design Margon Kaufmann Publishers, 2004, 2nd edition.
- 2. Robert Spence —Information visualization Design for interaction||, Pearson Education, 2 nd Edition, 2007

3. Stephen Few, —Information Dashboard Design-The Effective Visual Communication of Datal: O'Reilly Media Publisher,1st Edition 2006

# **REFERENCES:**

1.Stuart.K.Card, Jock.D.Mackinlay and Ben Shneiderman, —Readings in Information Visualization Using Vision to thinkl, Morgan Kaufmann Publishers. 2008





# KALASALINGAM ACADEMY OF RESEARCH & EDUCATION (DEEMED TO BE UNIVERSITY) Under sec. 3 of UGC Act 1956. Accredited by NAAC with "A" Grade



Anand Nagar, Krishnankoli - 626126. Srivilliputtur (Via), Virudhunagar (Dt), Tamil Nadu | info@kalasalingam.ac.in | www.kalasalingam.ac.in