DEPARTMENT OF AUTOMOBILE ENGINEERING

B.Tech - Automobile Curriculum and Syllabus 2015

KALASALINGAM UNIVERSITY

(Kalasalingam Academy of Research and Education) **Anand Nagar, Krishnankoil - 626 126**

DEPARTMENT OF AUTOMOBILE ENGINEERING

Program Educational Objectives:

- **PEO 1:** Pursue higher studies or be employed in automobile or allied disciplines.
- **PEO 2:** Be a successful entrepreneur in creating jobs related to automobile or related engineering fields.
- **PEO 3:** Promote ethics, sustainability and environmental responsibility in their practice.

Student outcomes as described by ABET:

- 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. An ability to communicate effectively with a range of audiences.
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Outcomes:

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

B. TECH. AUTOMOBILE ENGINEERING

Curriculum Structure

S.No	Category		Credits
I.	Basic Sciences and Mathematics	25	31
	Free Elective (Basic Science Stream)	6	31
II.	Humanities and Social Science		
	Soft Skills	3	19
	Humanities Elective	9	
III.	Basic Engineering		14
IV.	Program Core		
	a) Core Courses	85	
	b) Community service Project	3	98
	c) Project work	10	, , , ,
V.	Elective Courses		1
	a) Major/ Minor Elective (Professional	18	
	Elective)		27
	b) Self-Study Elective	3	
	Total Credits		183

Semester I

Codo No	Subject	Oh	jectives & Outcomes	L	Т	P	C
Code No.	Subject	PEOs	POs	L	1	r	C
HSS101	English for Technical Communication I	1,3	6,7,8,9,10,11,12	2	0	0	2
MAT101	Mathematics I	1,2	1,2,3,4,5,12	3	0	0	3
PHY101	Physics I	1,2	1,2,3,4,5,6,7,9,10	3	0	0	3
CHY106	Chemistry	1,2	1,2,3,4,5,6,7,9,10,11,12	3	0	0	3
MEC101	Engineering Drawing	1,2.3	1,2,3,4,5,6,7,8,9,10,11,12	1	0	3	2
CIV101	Basic Civil and Mechanical Engineering	1,3	1,2,3,4,5,6,7,8,9,10,11,12	4	0	0	4
MEC181	Work Shop	1,2	1,2,3,4,5,8,9,10	0	0	3	1
CHY181	Chemistry Laboratory	2	1,2,3,4,6,7,8,9,10,12	0	0	3	1
	Total			16	0	9	19

Semester II

			jectives & utcomes				
Code No.	Subject	PEO	POs	L	T	P	C
HSS102	English for Technical Communication II	1,3	8,9,10	2	0	0	2
MAT102	Mathematics II	1,2	1,2,3,4,5	3	0	0	3
PHY103	Physics II	1,2	1,3,4,7	3	0	0	3
EEE101	Basic Electrical and Electronics Engineering	2	1,2,5,7,12	4	0	0	4
CHY101	Environmental Sciences	2,3	1,2,3,6,7,8	2	0	0	2
CSE102	Programming Languages	2,3	1,2,3,5,6,7	2	0	0	2
MEC103	Engineering Mechanics (except BT, IT, CSE)	1,2	1,2,3,4,5,7, 8,9,10,11,1 2	3	0	0	3
PHY181	Physics Laboratory	2	1,4,5,8,9, 10	0	0	3	1
CSE181	Programming Language Laboratory	2,3	1,2,3,4,5,8, 9,10	0	0	3	1
HSS036	Soft Skills – I						1
	Total				0	6	22

Semester III

Code No.	Subject	·	jectives & utcomes	L	T	P	C
	· ·	PEOs	POs				
MAT209	Mathematics III	1,2	1,2,4,5,12	3	0	0	3
HSSxxx	Humanities Elective I	1,3		3	0	0	3
MEC201	Strength of Mateirals	1,2	1,3,4,5,8,9, 10,12	3	1	0	4
MEC203	Fluid Mechanics and Machinery	2	1,2,3,4,7,10, 12	3	1	0	4
AUT201	Advanced Manufacturing Technology	1,2	1,2,3,4,5,10,	3	1	0	4
AUT207	Thermodynamics and thermal engineering	1,2	1,3,4,5,8,10, 11,12	3	0	0	3
MEC281	Strength of Materials / Fluid Mechanics Laboratory	2	1,2,3,4,6,8,9 ,10,11,12	0	0	3	2
MEC282	Manufacturing Technology Laboratory	2	1,3,5,7,8,10,	0	0	3	2
AUT283	Industrial Case Study						1
HSS037	Soft Skills – II						1
	Total	18	4	9	27		

Semester IV

Code No.	Subject	Objectives & Outcomes		L	Т	P	C
	,	PEOs	POs				
MAT211	Numerical Methods	1,2	1,2,3,4,5,7,1 0,12	3	0	0	3
AUT202	Mechanics of Machines	1,2	1,2,3,4,7	3	1	0	4
AUT204	Automotive fuels and Lubrications	1,2	1,3,4,5,6,7,1 1,12	3	0	0	3
AUT205	Automotive Chassis	1	1,2,3,4,9,12	3	0	0	3
AUT206	Automotive Engines – I	1,2	1,2,12	3	1	0	4
AUT208	Electronics and Instrumentation	1	1,2,3,4,6,7,1 0,11,12	3	0	0	3
AUT282	Automotive fuels and Lubrications laboratory	1,2,3	1,3,4,5,7,12	0	0	3	2
AUT284	Engine testing laboratory	1,2,3	1,2,3,4,5,6,7 ,10,11,12	0	0	3	2

AUT285	Electronics and Instrumentation Laboratory		0	0	3	2
HSS038	Soft Skills – III					1
	Total		18	3	9	27

	Semester V						Semester V										
Code No.	Subject	•	jectives & utcomes	L	Т	P	С										
	-	PEOs	POs														
AUTxxx	Department Elective – I			3	0	0	3										
	Minor Elective – I			3	0	0	3										
AUT301	Automotive Electrical Systems	1,2	1,2,3,5,10,1	3	0	0	3										
AUT302	Automotive Engines – II	1,2	1,2,3,4,5,6,7 ,10,12	3	1	0	4										
AUT303	Automotive Transmission	1,2	1,2,3,5,6,8,1 0,12	3	0	0	3										
AUT314	Automotive component design	1,2	1,2,3,4,5,6,7	3	1	0	4										
AUT387	Vehicle Testing Laboratory	1,2,3	1,2,3,4,5,6,1 0,12	0	0	3	2										
AUT388	Automotive component design Laboratory	1,2,3	1,2,5,6,8,10, 11,12	0	0	3	2										
AUT391	Community Service Project – Phase I	1,2,3	1,2,3,5,10,1			2	1										
Total						11	25										

Semester VI

Code No.	Subject	Objectives & Outcomes		L	Т	P	C
	-	PEOs	POs				
AUTxxx	Department Elective – II			3	0	0	3
	Free Elective – I (Basic Science Course)			3	0	0	3
AUT304	Automotive Material and Metallurgy			3	0	0	3
AUT306	Automotive Aerodynamics			3	1	0	4

AUT307	Automotive Pollution and Control	1,2	1,2,3,4,5,7, 8,9,10,11, 12	3	0	0	3
AUT310	Vehicle Body Engineering	1,2	1,2,3,5,7,9, 12	3	1	0	4
AUT389	Measurements and Metrology Laboratory	1,2,3	1,2,3,4,5,6, 7,8,9,10,11, 12	0	0	3	2
MEC383	Dynamics and Vibration Laboratory	1,2,3	1,2,3,4,5,6, 7,8,10,11, 12	0	0	3	2
AUT386	Comprehension			0	0	3	1
AUT392	Community Service Project – Phase II					3	2
	Total						27

Semester VII

Code No.	Subject		ectives & utcomes	L	Т	P	C
	3	PEOs	POs				
HSSxxx	Humanities Elective II			3	0	0	3
HSSxxx	Humanities – Elective – III			3	0	0	3
	Free Elective – II (Basic Science Course)			3	0	0	3
AUTxxx	Department Elective – III			3	0	0	3
AUTxxx	Department Elective – IV	1,2	1,2,3,4,5,7	3	0	0	3
	Minor Elective – II	1,2	1,2,3,4,7, 9,12	3	0	0	3
AUT401	Vehicle Dynamics	1,2	1,2,3,4,12	3	0	0	3
MEC481	Simulation Laboratory	1,2,3	1,2,3,4,5	0	0	3	2
	Total			21	0	3	23

Semester VIII

Code No.	Subject	Objectives & Outcomes			Т	P	C
		PEOs	POs				
AUTxxx	Self Study Elective			3	0	0	3
AUT499	Project Work	1,2,3	1,2,3,4,5,6, 7,8,9,10,11, 12	0	0	24	10
	Total			3	0	24	13

Total Credits (from 1^{st} semester to 8^{th} semester = 183)

LIST OF ELECTIVES

MAJOR ELECTIVES

No.	Subject	L	T	P	C
AUT305	Automotive Electronics	3	0	0	3
AUT308	Alternate Fuels and Energy Systems	3	0	0	3
AUT309	Combustion and Heat Transfer	3	0	0	3
AUT312	Microprocessor Application in Automobiles	3	0	0	3
AUT313	Instrumentation and Metrology	3	0	0	3
AUT315	Modern Vehicle Technology	3	0	0	3
AUT316	Off-road Vehicles	3	0	0	3
AUT317	Energy, Ecology, Environment and Society	3	0	0	3
AUT318	Vehicle Maintenance	3	0	0	3
AUT319	Foundry engineering	3	0	0	3
AUT320	Computer Simulation of IC Engines Process	3	0	0	3
AUT322	Two and Three Wheelers	3	0	0	3
MEC321	Optimization Techniques	3	0	0	3
MEC327	Heat and Mass Transfer	3	0	0	3
AUT402	Advanced Theory of IC Engines	3	0	0	3
AUT403	Vehicle Vibration and Noise Control	3	0	0	3
AUT404	Tractor and Farm Equipments	3	0	0	3
AUT405	Production Processes for Automotive Components	3	0	0	3
AUT406	Computer Aided Vehicle Design	3	0	0	3
AUT407	Transport Management	3	0	0	3
AUT408	Automotive Safety	3	0	0	3
AUT409	Theory and Design of Jigs and Fixtures	3	0	0	3

AUT410	Renewable Sources of Energy	3	0	0	3
AUT411	Applied Numerical Techniques and Computing	3	0	0	3
AUT412	Fleet Management	3	0	0	3
AUT413	Hydrogen and fuel cells	3	0	0	3
AUT414	Lean Manufacturing	3	0	0	3
AUT415	Automotive Air-conditioning	3	0	0	3
MEC412	Micro Electro Mechanical Systems	3	0	0	3
MEC418	Rapid Prototyping	3	0	0	3
MEC420	Industrial Engineering	3	0	0	3

MINOR ELECTIVES

No.	Subject	L	T	P	C
CHE325	Computational Fluid Dynamics	3	0	0	3
CHE326	Computational Heat Transfer	3	0	0	3
CIV425	Disaster Management and Thermo Dynamics	3	0	0	3
CSE314	Digital Image Processing	3	0	0	3
EEE306	Special Electrical Machines	3	0	0	3
EEE410	Neural Network And Fuzzy Logic	3	0	0	3
MEC315	Design for Manufacture	3	0	0	3
MEC317	Tribology	3	0	0	3
MEC323	Material Management	3	0	0	3
MEC327	Heat and Mass Transfer	3	0	0	3
MEC410	Mechanical Behavior of Materials	3	0	0	3
MEC421	Non-Destructive Examination	3	0	0	3
MEC424	Industrial Automation and Robotics	3	0	0	3

FREE ELECTIVES

Course id	Course name	Credits
BPY502	Laser Physics	3
BPY503	Nonlinear Optics	3
BPY504	Radiation Physics	3
BPY506	Nuclear Physics	3
BPY507	Space Physics	3
BCY501	Nano chemistry	3
BCY504	Applied Chemistry	3
BMA332	Mathematical Modeling	3
BCY506	Environmental Chemistry	3
BMA331	Combinatorics	3
BCY505	Instrumental Method of Analysis	3

HUMANITIES ELECTIVE

Course Code	Course Name	L	T	P	C
HSS001	Total Quality Management	3	0	0	3
HSS002	Engineering Management	3	0	0	3
HSS003	Indian Economic Development	3	0	0	3
HSS004	Industrial Psychology	3	0	0	3
HSS006	Professional Ethics	3	0	0	3
HSS008	Basics of Economics	3	0	0	3
HSS010	International Trade and Finance	3	0	0	3
HSS011	Information Systems for Managerial Decision Making	3	0	0	3
HSS013	Cost Analysis and Control	3	0	0	3
HSS014	Marketing Management	3	0	0	3
HSS015	Management Concepts and Techniques	3	0	0	3
HSS016	Organizational Psychology	3	0	0	3
HSS017	International Economics	3	0	0	3
HSS018	Communication Skills	3	0	0	3
HSS019	Operations Research	3	0	0	3
HSS020	Human Resource Management	3	0	0	3

HSS022	Banking Theory and Practice	3	0	0	3
HSS023	Entrepreneurship Development	3	0	0	3
HSS024	Industrial Psychology	3	0	0	3
HSS031	English Advance Level	3	0	0	3

ONE CREDIT COURSES

Course Code	Course Name	Credits
MECX001	Non destructive testing	1
MECX002	Advanced welding processes	1
MECX003	CNC programming	1
MECX004	Plastic processing technology	1

ONLINE COURSES


Course Code	Course Name	Credits
MECO001	Material selection and design	3
MECO002	Micro and smart systems	3
MECO003	Finite element analysis of solids and fluids - i	3
MECO004	Mechanical assembly and its role in product	3

THEORY SUBJECT WITH PRACTICAL COMPONENT (*)

1.	AUT203 – Automotive Design
2.	AUT304 – Automotive Material and Metallurgy
3.	MEC327 – Heat and Mass Transfer

LABORATORY COURSES WITH PROJECT (**)

1	MEC282 – Manufacturing Technology Lab
2	MEC481 – Simulation Lab

HSS101	EN	IGLIS	SH FO	R TEC	HNIC	AL CON	MMUNI	CATIO	N I	L	T	P	C	1
H55101	(Common to all branches)								2	0	0	2	,	
Prerequisite	Basics	Basics in English												
Objective(s)	To train the students on improving their listening, speaking, reading and Writing skills													
Course Outcome(s)														
CO1	Listen and comprehend different spoken excepts critically and infer unspoken and Implied meanings.													
CO2								initiate itive stra		sion,				
CO3								ing s and esentatio		y analy	ze an	ıd		
CO4	Write e	effecti	vely an	d persu	ıasively	and pro	duce dif	ferent ty	pes of w	riting				
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1)]	PO11	PO12	2
CO1						Н				M		L		
CO2						Н	L	L		Н		M	L	
CO3										Н		L	L	
CO4								L	L	Н		M	L	

FOCUS ON LANGUAGE

Parts of speech - nominal compounds, noun phrases - relative pronoun - adjective - numerical, comparison and contrast, collocation and word combinations - verb - preposition and relative - conjunction- connectives, expressions of purpose and function, cause and effect - articles - adjectives - sentence pattern - tenses - voice - rewriting the sentences in impersonal/abbreviated passive grammatical structures - concord - sentence level verb noun agreement - gerund - rewriting infinitive into gerund - imperative - rewriting imperative into recommendation using should - word formation - varied grammatical function of the same word - affixes - prefix and suffix, number prefix, negative prefix - reported speech - editing strategies - conditional structures - real, unreal, no possibility, zero condition - writing formal definition - abbreviation and acronym - idioms and phrases - varieties of English - British versus American.

Course Topics

LISTENING SKILLS

Comprehension practice - vocabulary development - familiarity to varied types of spoken English and accents - developing ability to understand audio and video media - aiming at overcoming barriers to listening - listening to documentaries, radio news broadcasts, TV news telecasts - active listening in discussions and to lectures - taking notes while listening - extracting information from listening.

SPEAKING SKILLS

Oral practice - role play - interplay - seminar - transcoding visual into oral - participating in short and longer conversation - voice record, replay, correction of intonation, pronunciation and flow of speech - phonemes - vowels, consonants, stress, rhythm, intonation - group discussion - participative learning - acquiring proficiency, fluency, accuracy in oral communication - speaking practice - developing confidence - extempore speech - learning professional/conversational etiquette.

READING SKILLS

Vocabulary extension - improving vocabulary - intensive reading - reading strategies - identifying topic sentence - guessing meaning from content - picking out specific information - professional reading - reading practice - predicting the content, critical and analytical reading - reading articles in English newspapers, sports magazines, encyclopedias - reading aloud, use of stress and intonation - reading and comprehending technical materials - cloze reading.

WRITING SKILLS

Discourse cohesion - improving writing skills, avoiding common grammatical errors in academic writing - extending the hints - writing shorter sentences - punctuation - dialogue writing - paragraph writing, problems and solutions, achieving coherence, transition words, sequence words - essays of descriptive and argumentative

- writing instructions, use of imperatives - jumbled sentences into sequential paragraph using linguistic clues - report writing - technical reports, industry visit reports, events reports - writing recommendations - letter writing - formal and informal letters - job application and resume, permission for in-plant training, business correspondence letters, calling for quotation, placing order, lodging complaint, persuasive letters - assignment writing - mini-project - transcoding - transferring of information from text to pictorial/graphical representation and vice versa.

Text Book

1. Rizvi M Ashraf, Effective Technical Communication, Tata McGraw-Hill, 2005.

- 1. Daniel Jones, English Pronouncing Dictionary, Universal Book Stall, New Delhi, 17th Edition, 2000.
- 2. Geoffrey Leech, Fan Svartvik, A Communicative Grammar of English, Pearson Education Asia, 1994.
- 3. Hornby, AS, Oxford Advanced Learner's Dictionary of Current English, OUP, 7th Edition, 2005.
- 4. Manivannan G, English for Engineers A Book on Scientific and Technical Writing, Govi Publications, 2005.
- 5. Martin Cutts, Plain English Guide How to Write Clearly and Communicate Better, Oxford University Press, 1999.

MAT101			I	MATH	EMATIO	CS I				L	T	P	C
MATIUI	(Common to all Branches)										0	0	3
Prerequisite	Basics i	Basics in Mathematics.											
Objective(s)	To make the students acquire knowledge in matrix theory a part of linear algebra which has wider applications in engineering problems. To make the student knowledge in the area of infinite series and their convergence so that the students will be familiar with in finite series approximations for a solutions arising in mathematical modeling and to solve first and higher order differential equations and to Laplace												
		m to solv								•			1
Course Outco	me(s)												
CO1	Perform	n element	ary mat	rix and	vector op	peration	s and us	se them	in appl	ication	1S		
CO2	Find de	rivatives	of funct	ions an	d use der	ivatives	to solv	e applie	ed prob	lems.			
CO3	Use pol	ar coordi	nates in	solving	the prob	olems.							
CO4	Apply d	efinition,	concep	ts of an	alytical g	eometr	у.						
Mapping of C	Os with 1	POs	•										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
CO1	Н	Н	M	M									
CO2	Н	M	M	M	L								L
CO3	Н	Н		M	L								L
CO4	Н	M	M	M									
					Course '	Topics					•		

MATRICES

Review of linear algebra - matrix operations - addition, scalar multiplication, multiplication, transpose, adjoint and their properties- special types of matrices - null, identity, diagonal, triangular, symmetric, skew - symmetric, Hermitian, skew - Hermitian, orthogonal, unitary, norma - rank - consistency of a system of linear equations - solution of the matrix equation Ax = b - row - reduced Echelon form.

EIGEN VALUE PROBLEMS

Eigen value and eigen vector of real matrix – properties of eigen values and eigen vectors – Cayley - Hamilton theorem – Orthogonal transformation of a real symmetric matrix to diagonal form – reduction of quadratic form to canonical form by orthogonal transformation – index, signature and nature of quadratic form.

DIFFERENTIAL CALCULUS

Review of limits - continuity and differentiability - curvature - Cartesian and Parametric Co-ordinates - centre and radius of curvature - circle of curvature - evolutes - involutes - envelopes - partial differentiation - Euler's theorem for homogeneous functions - total differential - Taylor's expansion (two variables) - Maxima / Minima for functions of two variables - Method of Lagrangian multiplier - Jacobians.

THREE DIMENSIONAL ANALYTICAL GEOMETRY

Direction cosines and ratios – angle between two lines – equations of a plane – equations of straight line – coplanar lines – shortest distance between two skew lines – sphere – tangent plane – plane section of a sphere – orthogonal spheres.

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and higher order linear ODE with constant coefficients – Cauchy's and Legendre's linear equations - Simultaneous first order linear equations with constant coefficients - Method of variation of parameters.

Text Books

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 8th Edn., 2001.
- 2. Arumugam, S., Thangapandi Isaac, A., Somasundaram, A., Engineering Mathematics Volume I, Scitech Publications (India) Pvt. Ltd., Chennai, 2nd Edn., Reprint 2000, 1999.

- 1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 37th Edn. 2003.
- 2. Venkataraman, M. K., Engineering Mathematics First Year, The National Publishing Company, Chennai, 2nd Edn., 2000

DHW 101				P	HYSIC	S – I				L	T	P	C		
PHY 101				(Comm	on to all	Branche	es)			3	0	0	3		
Prerequisite	Basics	of Physi	ics												
Objective(s)	To ma	ke the st	udent to	learn ab	out the b	asics of	types wa	ves and	application	on of					
Objective(s)	waves	and to m	nake the	student l	earn abo	ut the ne	w adapt	ing techi	niques.						
Course Outco	Course Outcome(s) Learn the basics of the different types of sound waves and production &														
	Learn	the bas	sics of	the diff	erent ty	pes of	sound v	vaves a	nd produ	action	&				
CO1	applica	ation of	ultrason	ic. And	the bas	ic conce	pts, pro	duction	& application	ations of	of differ	ent			
	types o	bes of laser sources.													
CO2	Learn	Learn the basic knowledge of crystallography and it's preparation techniques													
CO3	Gain t	he know	ledge abo	out the fi	undamer	tals, the	ory of	quantum	physics						
CO4	Gain the matter		ledge abo	out vario	ous mech	anical pi	roperties	& therm	nal proper	ties of					
Mapping of C	Os with	POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12		
CO1	M			M	M				M	M					
CO2	Н	M	Н	M	Н	M	Н		M						
CO3	Н		Н	Н	Н		M		M						
CO4	Н														
					Course	Topics									

ACOUSTICS AND STRUCTURE OF SOLIDS

Classification of sound - reverberation, Sabine's formula, common acoustical defects and remedies - classification of solids- Crystal structures, X-ray diffraction, crystal growth, Crystal defects.

LASER AND FIBRE OPTICS

Interaction of radiation with matter – quantum mechanical view, three and four - level laser system, engineering and medical applications - introduction of fibre optics- classification of fibre, engineering and medical applications

QUANTUM PHYSICS

Inadequacy of classical mechanics – black body radiation, Plancks law, photoelectric effect, Compton effect, Einstein's photoelectric equation, Schrödinger wave equation, Particle in one, three dimensional box.

NDT, NEW ENGG.MATERIALS

Ultrasonics, Ultrasonics flaw detectors, X-ray photography, Fluoroscopy, Thermography, Gamma ray spectroscopy, Characterization technique Nanophase materials, Biomaterials, Non linear materials, polymer materials.

DIGITAL ELECTRONICS

Introduction, Analog to Digital circuits, Conversion of numbers one's complement, 2's complement, logic gates, Boolean algebra, DeMorgan's theorem, Karnaugh's maps.

Text Book

1. Gaur R. K. and Gupta S. L., Engineering Physics, Dhanpat Rai Publishers, New Delhi, 2001.

- 1. Murthy V.S.R., Jena AK., Gupta K.P. and Murthy G.S., Structures and Properties of Engineering Materials, Tata McGraw Hill Publishing company Limited, New Delhi, 2003.
- 2. Ali Omar. M, Elementary Solid State Physics, Pearson Education (Singapore), Indian Branch, New Delhi, First Edition, 2006.
- 3. William F. Smith., Foundations of materials science and Engineering, McGraw-Hill, New York, 3rd Edition, 2003.
- 4. Mathews. P.M., Venkatesan. K., Text Book of Quantum Mechanics, Tata McGraw Hill Company, Delhi, 2003.
- 5. Gupta S.L., Kumar, V., Hand book of Electronics, Pragati Prakashan, Meerut, 28th Edition, 2001.

CHY106		CHEMISTRY								\mathbf{L}	T 1	P C		
CITTIOO				C	HENIIS	111				3	0 (3		
Prerequisite	Basics	in Chen	nistry											
									of water					
Objective(s)							heory be	hind the	corrosion	n and an	alyzing			
Objective(s)	_	-		le measu										
	To ma	ke the st	udents to	o learn at	oout the	PVC, po	lymers a	nd biom	olecules.					
Course Outco														
CO1	Learn	the techr	niques of	purifica	tion of v	vater								
CO2	Explai	xplain the principles of chemical & electrochemical reactions and prevention of corrosion of												
CO2	materi	naterials												
CO3									tical tech					
CO4	Explai	n the pri	nciples a	and gener	ration of	energy i	n batteri	es, solar	cells and	l fuel				
	cells													
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M	M	Н	M	M		M		M	M		L		
CO2	M	Н				L	Н		Н	Н	Н			
CO3	M	M	L	L	M	M			M	M		L		
CO4	M	Н	M			L	M		M	M		L		
					Course	e Topics								

WATER

Water Quality Parameter (Industry and Drinking Water) – Hardness, Definition, Classifications, Expressions, Units of Hardness of Water with respect to CaCO₃, Problems -Estimation of Hardness by EDTA Method (Theory Only) - Definition of Alkalinity (Theory Only) – Boiler feed water - Requirements, Disadvantages of using hard water in boilers, Removal of boiler scales and sludges - Water Softening - Zeolite Process, Demineralization (Ion – Exchange Process), Desalination.

CORROSION SCIENCE AND CONTROL ENGINEERING

Corrosion, definitions – Electrode potential - Principles of Dry and Wet Corrosion, Factors Influencing rate of corrosion, Types of Corrosion - Corrosion Control – Impressed Current Cathodic Protection and Sacrificial Anodic Protection Method - Corrosion Inhibitors – Protective Coatings, Surface conversion coatings, organic coatings (paints).

POLYMERS

Introduction, Classification, Difference Between Thermoplastic and Thermosetting Plastics – Properties of Plastic - Degree of Polymerization – Types of Polymerization (Mechanism) - Phenol Formaldehyde Resin, Epoxy Resin, polyurethanes, Teflon - Amino Resins (Urea Formaldehyde, Nylon.11, Nylon.66 and Nylon 6), PET, PVC – Composites - Definition, characteristics, Constituent. Types- Fibre reinforced plastics (FRP), Metal Matrix Composites (MMC), Ceramic Matrix Composites (CMMC), Properties and Applications.

INSTRUMENTAL METHODS OF ANALYSIS

Electro Magnetic Radiation - Absorption of Radiation , Beer - Lambert's Law - UV-VIS. Spectroscopy - IR Spectroscopy - Principle and Instrumentation (Black Diagram Only) Estimation of Iron by Colorimetry - Flame Photometry, Principle and Instrumentation (Black Diagram Only), Estimation of Na by Flame Photometry - Atomic Absorption Spectroscopy, Principle and Instrumentation (Block Diagram Only), Quantitative Estimation of Nickel by Atomic Absorption Spectroscopy.

METALLURGY AND NANOTECHNOLOGY

Introduction, Characteristic of Metals, Occurrence of Metals, Flux, Slags - Classification of Ores – Metallurgy – Ore Dressing, Purification of Metals, (Physical and Chemical Methods) - Powder Metallurgy - Introduction, Principles of Powder Metallurgy, Characteristic of Powder Metallurgy, Various Steps Involved in Powder Metallurgy, Application of Powder Metallurgy - Nanotechnology – Introduction, Preparation, Characterization and Application.

Text Books

- 1. Jain, P.C and Monika Jain, Engineering Chemistry, Dhanpat Rai Publishing company (P) Ltd., New Delhi, 14th Edition 2002.
- 2. Sharma, B.K., Industrial Chemistry, Goel Publishing House, Meerut, 12th edition 2001.

- 1. Puri B.R.and Sharma L.R. Principles of Physical Chemistry, Shoban Lal Nagin Chand and Co., Jalandhar, 40th edition 2003.
- 2. Vogel A.I., A text book of Quantitative Inorganic Analysis, ELBS, London, 3rd edition 2000.
- 3. Mick Wilson and Kamali Kannangara, Nanotechnology: Basic science and emerging technology, Overseas India Pvt. Ltd. Press, New Delhi, Ist edition 2005.
- 4. Bandyopadhyay, A.K., Nano Materials, New Age International Publishers, New Delhi, 1st edition 2007.

MEC101			F	ENGINE	ERING	DRAW	ING			L	T	P	C
MECIUI				(Comn	non to al	l Branch	es)			1	0	3	2
Prerequisite	Basics	in Draw	ing										
Objective(s)	drawin Demoi	ig skills istrate sl	for co	mmunic nterpreti	ating co	oncepts, produci	ideas a	and desi eering d	ation, dev igns of rawings a	engine	ering p		
	exposi	ire to nat	tional sta	andards r	elating t	o engine	ering dr	awing					
Course Outco	me(s)												
CO1	Know	the purp	ose, proc	cedures,	materials	s, standa	rds and c	onventio	onal symb	ols use	d		
CO2		Create and read an engineering drawing using standard views and convert pictorial 3-D) drawings to orthographic (2-D) drawings and vice versa											
CO3	Know	Know the principles projection, distinguish the types of projection and first angle projection of various objects like straight line, planes and solids											
CO4	Explai	n the pri	nciple ar	nd applic	ation of	sectionin	ıg						
CO5	Unders	stand and	d apply the	he conce	pts of de	evelopme	ent of sur	faces					
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	M		M				M			Н			M
CO2		Н			M			Н		M			Н
CO3	M		Н	L		Н			M		M		
CO4	L	L M L M L											
CO5	Н			M	M				M				L
					Course	e Topics			•				

INTRODUCTION

Importance of graphics – use of drafting instruments – BIS conventions and specifications – size, layout and folding of drawing sheets – lettering dimensioning and scales - orthographic principles – missing view - free hand sketching in first angle projection from pictorial views.

PROJECTION OF POINTS, STRAIGHT LINES AND PLANES

Projection of points, located in all quadrants - projection of straight lines located in the first quadrant, determination of true lengths and true inclinations, projection of polygonal surface and circular lamina located in first quadrant inclined to one or both reference planes.

PROJECTION OF SOLIDS AND SECTION OF SOLIDS

Projection of solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method – types of section – full section and half section -conventional section lines - section of simple solids like prisms, pyramids, cylinder and cone in vertical position by cutting planes inclined to any one of the reference planes, obtaining true shape of section

DEVELOPMENT OF SURFACES

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones

ISOMETRIC AND PERSPECTIVE PROJECTION

Principles of isometric projection – isometric view and projections of simple solids, truncated prisms, pyramids, cylinders and cones - Orthographic to isometric view – Introduction to perspective projection.

Text Book

1. Basant Aggarwal and C. Aggarwal, Engineering Drawing, Tata McGraw-Hill publishing company, New Delhi, 2008

- 1. Shah, M.B., and Rana, B.C., Engineering Drawing, Pearson Education, New Delhi, 2005.
- 2. Nataraajan, K.V., A text book of Engineering Graphics, Dhanalakshmi Publishers, Chennai, 2006.
- 3. Bhatt, N.D., Engineering Drawing, Charotar publishing House, New Delhi, 46th Edition, 2003.
- 4. Luzadder and Duff, Fundamentals of Engineering Drawing, Prentice Hall of India Pvt Ltd, New Delhi, XI Edition, 2001.
- 5. Venugopal, K., Engineering Graphics, New Age International (P) Limited, 2002.

CIV101		BASI	C CIVII	L AND N	ИЕСНА	NICAL	ENGIN	EERIN	G	L	T	P	C
CIVIUI				(Comn	non to all	Branch	es)			4	0	0	4
Prerequisite	Basics	in civil a	nd mech	anical s	cience								
Objective(s)	Civil E and im various	ingineeri portance	ng like of tran	surveyir	ig, build n and in	ing mat	erials, co	omponen	iding the its of but g like po	ilding,	differer		
Course Outco													
CO1		describe the scientific terminologies related to mechanical sciences and miliarize with different components, equipments in boilers & turbines											
CO2	industr	To know the purpose, procedures, and the materials used and standards adopted in industries											
CO3		Understand the basic laws pertaining towards the subject, explain the principle, working and application of Engines and Power plants											
CO4			11 2	he conce plication	-		_		nology re	elated.			
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12
CO1	M	M	M	M		M			M	M			
CO2	M	Н	Н	M	M		M			M	L		
CO3	M	M	M	M			L	M		M			M
CO4	M	M M M M M											
					Course	Topics							

CIVIL ENGINEERING

BUILDINGS

Characteristics of good building materials such as stones, bricks, plywood and ceramic tiles, timber, cement, aggregates and concrete - Basic functions of buildings - Major components of buildings - Foundations - Purpose of a foundation - Bearing capacity of soils - types of foundations. Proper methods of construction of Brick masonry - Stone masonry - Hollow Block masonry. Beams - Lintels - Columns - Flooring - Damp proof course - surface finishes - Doors and windows - Roofing.

TRANSPORTATION ENGINEERING

Principles and Classification of surveying, Chain surveying, Compass surveying and leveling - Importance of roads - Classification of Highways -water bound macadam, bituminous and cement concrete roads -. Railways - Importance of railways - Gauges - Components of a permanent way. Bridges - Components of Culverts - Causeways, Slab Bridge, T-beam and slab bridge, Suspension bridge

MECHANICAL ENGINEERING

BOILERS AND TURBINES

Boilers - boiler mountings and accessories – Cochran boiler, Locomotive boiler, Babcock and Wilcox boiler, fire and water tube boilers - Steam turbine - single stage impulse turbine, Parson's reaction turbine, difference between impulse and reaction turbines.

POWER PLANTS AND INTERNAL COMBUSTION (IC) ENGINE

Classification of power plants – steam, nuclear, diesel and hydro power plants - Alternate sources of energy - solar, wind, tidal, geothermal, ocean thermal energy conversion. – IC engine - components, working of four and two stroke petrol and diesel engines.

PRODUCTION TECHNOLOGY

Metal casting and forming process –patterns, moulding, melting of cast iron, casting – forging – rolling – extrusion – drawing - Metal joining process - welding – arc welding, gas welding, brazing and soldering - Metal machining – lathe, drilling machine, milling machine, shaping machine, planing machine, introduction to Computer Numerical Control machining.

Text Book

1. Shanmugam, G., and Palanichamy, M.S., Basic Civil and Mechanical Engineering, Tata McGraw Hill Publishing Co., New Delhi, 1996.

- 1. Khanna, K., Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001
- 2. Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Rai and Sons, New Delhi, 1997.
- 3. Venugopal K., Basic Mechanical Engineering, Anuradha Publications, Kumbakonam, 2000.
- 4. Shanmugam G., Basic Mechanical Engineering, Tata McGraw Hill Publishing Co., New Delhi, 2001.

MEC181				V	VORK S	НОР				L	T I	P C		
MIECIOI				(Comn	non to al	l Branch	es)			0	0 3	3 1		
Prerequisite	Basics	of the w	orkshop	process										
Objective(s)							op proce	ss and to	gain so	me basic	;			
Objective(s)	knowl	edge abo	out the fo	oundry te	chnolog	y.								
Course Outco	me(s)													
CO1	To ma	ke the jo	ints and	to under	stand the	eir uses i	n woode	n produc	ets					
CO2	To fab	fabricate metal joining with simple saw process.												
CO3	To ma	o make hollow channels, containers using sheet metal development.												
CO4	To car	ry out va	rious ma	achining	techniqu	ies like I	Orilling,	Tapping	, etc					
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L		M							M				
CO2	L	L	M	L	M				L	M				
CO3		M L M M												
CO4		M M L L M												
					Course	e Topics								

CARPENTRY

Carpentry tools - practice in marking, sawing, planing and chiseling - making simple joints: lap joint, T-joint, dovetail joint, mortise and tenon joint.

FITTING

Fitting tools - practice in marking, filing, punching, hacksawing - fitting to size and drilling - making of simple mating profiles: V, square, dovetail, half round joints.

SHEET METAL

Study of press, die and tools - sheet metal layout - development of lateral surfaces -simple exercises: blanking, forming, bending and flanging.

DRILLING

Drilling and tapping in drilling machines

Demonstration on

- 1. Welding operations like butt joint and lap joints in Arc welding
- 2. Foundry operations like mould preparation for split pattern
- 3. Smithy operations like the production of hexagonal bolt
- 4. Preparation of plumbing line sketches basic pipe connections involving the fittings like valves, taps, couplings, unions, reducers, elbows and other components used in household fittings.

CHY 181			CI	HEMIST	TRY LA	BORAT	ORY			L	T I	P C	
CH1 101				(Comm	on to all	Branche	es)			0	0 3	3 1	
Prerequisite	Basics	in scier	nce										
Objective(s)	Know	to carry	out basic	chemic	al engine	eering pr	ocess						
Course Outco													
CO1	Estima	ite the st	rength of	l method	ls.								
CO2	Analyz	alyze the water quality parameters of given water samples.											
CO3	Apply	oply the chemical engineering concepts in solving engineering problems											
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L		M	M					L	M			
CO2	L		M	M		M	M		L	M			
CO3	Н	L	M		L								
					Course	e Topics							

- 1. Preparation of standard and buffer solutions.
- 2. Estimation of hardness of water sample by EDTA method
- 3. Determination of dissolved oxygen in a sample of water.
- 4. Estimation of chloride and fluoride ion in water sample.
- 5. Determination of alkalinity of water sample.
- 6. Estimation of hydrochloric acid by pH titration
- 7. Estimation of ferrous ion by potentiometric titration
- 8. Estimation of mixture of acid by conductometric titration
- 9. Estimation of iron by spectrophotometric method.
- 10. Flame photometry Determination of Na and K

References

1. Vogel A.I., A text book of Quantitative Inorganic Analysis, ELBS, London, 3rd edition 2000.

HSS102		ENGL	ISH FO	R TECI	HNICAI	COM	MUNICA	ATION	II	L	T	P C	
H55102				(Comm	on to all	branche	es)			2	0	2	
Prerequisite	Basic k	cnowledg	ge in Eng	glish for	Technica	al Comn	nunicatio	n.					
Objective(s)	To imp	orove the	students	s commu	ınicate sk	cills							
Course Outco	me(s)												
CO1	Comm	nmunicate effectively in both written and oral forms											
CO2	Write	rite different forms of business and technical report effectively											
CO3	Execut	xecute editing and proof reading in manuscript preparation											
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1									L	Н			
CO2		L L H											
CO3													
					Course	Tonics							

GRAMMAR AND VOCABULARY

Grammar and vocabulary - introduction to grammatical models - proper use of tenses, concord, voice, articles, punctuation, and modal auxiliaries.

RECEPTION SKILLS

Listening and language development - improving listening skills - comprehension practice - comprehend classroom lectures, simple technically oriented passages - listening to news bulletins, pre-recorded talks, different speech styles, comprehending the essential meaning - physical and psychological barriers to listening - steps to overcome the barriers - practice in note-taking while listening.

SPEAKING TECHNIQUES

Speaking practice - improving conversing skills - improving self-expression - developing confidence and fluency in oral communication - physical and psychological barriers to speaking - steps to overcome the barriers - formal and public speaking practice - extemporary talk practice - speech process - fluency and accuracy in speech - developing persuasive speaking skills - conversation in a given milieu, social and cultural surroundings - practice in giving small talks on local topics for a minute or two - goal oriented group discussion - participating in seminars - independent and effective communication.

READING STRATEGIES

Reading comprehension - vocabulary extension methods - speed reading practice - technical and non-technical materials - practice in various reading techniques - skimming - scanning, eye reading - looking for specific information - comprehending the given passages, technical information.

WRITTEN COMMUNICATION

Basic grammatical structures - alphabet of other languages - paragraph writing - expressing the idea in writing - avoiding and correcting common errors - effective writing techniques - brevity, clarity, objectivity and simplicity - discourse writing - definition, description, instruction - note-making - proof reading - mechanics of writing - writing formal, informal letters, technical reports - reference skills - using dictionary better.

Text Books

- 1. Rizvi M Ashraf, Effective Technical Communication, Tata McGraw-Hill, 2005.
- 2. Rutherfoord Andrea J, Basic Communication Skills for Technology, Pearson Education, 2002.

- 1. Deborah C Andrews, Margaret D Bickle, Technical Writing Principles and Forms, Macmillan, 1978.
- 2. Manivannan G, English for Engineers A Book on Scientific and Technical Writing, Govi Publications, 2005.
- 3. Sarah Freeman, Written Communication in English, Orient Longman, 2000.
- 4. Thomson A J and AV Martinet, A Practical English Grammar, OUP, 4th Edition, 1986.
- 5. Tom Hutchinson, Alan Waters, English for Specific Purpose, Cambridge University Press, 1987.

M A T 102				MAT	THEMA	TICS II				L	T	P C		
MAT102				(Comm	on to all	branche	es)			3	0) 3		
Prerequisite	Basic	knowled	ge in Ma	athematic	cs									
	-	re knowl lids resp	_	use multi	iple integ	grals to f	ind area	and volu	ıme of suı	rface				
Objective(s)	Have a		rasp of a	nalytic fi	unctions	, comple	ex integr	ation and	d their int	eresting	gpropert	ies		
Course Outco														
CO1	Acqui	Acquire more knowledge in basic concepts of engineering mathematics												
CO2	Impro	ve proble	em evalu	ation tec	hnique									
CO3	Choos	e an app	ropriate	method t	o solve a	practic	al proble	m						
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н													
CO2	Н	H H M M												
CO3	Н	H L M H												
					Course	Topics								

SEQUENCES AND SERIES

Convergence and divergence of infinite series – series of positive terms – comparison, D'Alembert's ratio, Raabe's and Cauchy's root tests – Convergence of alternating series – Leibnitz's test (proof of theorems and tests not included) – elementary notions of absolute and conditional convergence - Power series – Taylor's theorem(one variable).

ANALYTIC FUNCTION AND CONFORMAL MAPPING

Function of a complex variable – Analytic function – Necessary conditions – Cauchy – Riemann equations – Sufficient conditions (excluding proof) – Properties of analytic function – Harmonic conjugate – Construction of Analytic functions - Conformal mapping - w = z+a, az, 1/z, e^z , sin z, cos z and bilinear transformation – fixed points – cross ratio.

COMPLEX INTEGRATION

Statement and application of Cauchy's integral theorem and integral formula – Taylor and Laurent expansions – Isolated singularities – Residues - Cauchy's residue theorem - Contour integration over unit circle and semicircular contours (excluding poles on boundaries)- evaluation of real integrals using contour integration.

MULTIPLE INTEGRALS

Review of Riemann integrals - Double integration - Cartesian and polar coordinates - change of order of integration - change of variable between Cartesian and polar - area as double integral - Triple integration in Cartesian, cylindrical and spherical polar coordinates - volume as triple integral.

VECTOR CALCULUS

Gradient, Divergence and Curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proof) – Simple applications.

Text Books

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 8th Edn., 2001.
- 2. Arumugam, S., Thangapandi Isaac, A., Somasundaram, A., Engineering Mathematics Volume II, Scitech Publications (India) Pvt. Ltd., Chennai, 1st Edn., Reprint 2000, 1999.

- 1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 37th Edn. 5th Reprint 2004, 2003.
- 2. Venkataraman, M. K., Engineering Mathematics First Year, The National Publishing Company, Chennai, 2nd Edn., Reprint 2001, 2000.
- 3. Venkataraman, M. K., Engineering Mathematics –III A, The National Publishing Company, Chennai, 11th Edn., Reprint 2002, 1998.

DHV 102				P	HYSICS	S – II				L	T	P	C	
PHY 103		((Common	to Civil	and Me	chanical	Enginee	ring)		3	0	0	3	
Prerequisite	Basic	knowled	ge about	structur	e of soli	ds and its	s types					•		
_	To gai	n knowl	edge and	d unders	tand abo	out the so	olid state	materia	ıls, cond	ucting.	2			
Ob.:4:(-)	semico	onducting	g, super	conduct	ing , di e	electric,	magnetic	c, optica	l material	ls				
Objective(s)	To lea	arn the la	test deve	elopment	ts on nev	v engine	ering ma	terials					ļ	
	To ga	in some	knowled	ge about	the diffe	erent ma	terial cha	aracteriza	ation tech	niques				
Course Outco	me(s)													
CO1	Under	stand the	free ele	ctron the	eories, fo	rmation	of energ	y bands,	energy					
COI	distrib	oution an	d also th	e electro	n behavi	ior in sol	ids							
CO2	Know	wand understand the cooper pair electron behavior, applications of												
CO2		perconducting materials in developing technologies earn the importance of semiconducting materials in engineering fields by												
CO3	Learn	the impo	rtance of	f semico	nducting	g materia	ls in eng	ineering	fields by					
CO3	project	ting the v	view of e	nergy ba	ands.									
CO4							netic mat	erials, th	eir prope	rties				
CO4	and ap	plication	s in adva	anced tec	chnologi	es.								
CO5			_			terials, th	neir prop	erties an	d signific	ant				
		ations in	advance	d techno	logies.									
Mapping of C	Os with	POs									_			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1	Н		M	M			L							
CO2	M	M M I												
CO3	M	M M L L												
CO4	M		M	M										
CO5	M		M				L							

THERMAL AND NUCLEAR PHYSICS

Mode of heat transfer, thermal conductivity, thermal diffusivity, thermal insulation in the buildings, application of heat transfer - nuclear forces, nuclear fission, nuclear reactor uncontrolled chain reaction, nuclear fusion.

Course Topics

CONDUCTING MATERIALS

Electron theory of solids – classical free electron theory, quantum free electron theory, band theory of solids

SEMI CONDUCTING AND SUPER CONDUCTING MATERIALS

Semi-conducting materials - introduction, types of semi-conducting materials, carrier concentration - hall effect - determination of hall coefficient - superconducting phenomena - properties of superconductors, Type I and Type II superconductors, High Tc

Superconductors, application of super conductors.

MAGNETIC MATERIALS

Classical theory of magnetism quantum theory of paramagnetism, Ferromagnetism, Ferrites, Applications of magnetic materials.

DIELECTRIC MATERIALS AND OPTICAL MATERIALS

Polarization - electronic, ionic, orientational and space charge polarization, internal field and deduction of Clausius - Mosotti relation - dielectric materials - properties, classification, insulating materials - optical properties of semiconductor-imperfection of crystals, luminescence, fluorescence and phosphorescence, light emitting diode, liquid crystal displays

Text Book

1. Arumugam M, Materials Science 3rd Edition, Anuradha Agencies, Kumbakonam, 2003.

- 1. Aswani K.G., A Text book of Material Science, S.Chand and Co., Ltd., New Delhi, 2nd Edition 2001.
- 2. William F.Smith, Foundations of Materials Science and Engineering, McGraw-Hill, New York, 3rd Edition, 2003.
- 3. Wahab M.A., Solid State Physics, Narosa Publishing House, New Delhi, Second edition, 1999.
- 4. Avadhanulu M.N., Kshirsagar P.G., A Text Book of Engineering Physics, S.Chand and Co. Ltd., New Delhi, 6th edition, 2003.
- 5. Pillai S.O., Solid State Physics, 5th edition, New Age International Publication, New Delhi, 2003.

- 6. Ali Omar.M., Elementary Solid State Physics, Pearson Education (Singapore) Pvt. Ltd., Indian Branch, New Delhi, 2002.
- 7. Murthy V.S.R., Jena A.K., Gupta K.P. and Murthy G.S., Structure and Properties of Engineering Materials, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2005.
- 8. Kenneth G., Budinski, Michel K. Budinski, Engineering Materials Properties and Selection, Pearson, Singapore (Prentice Hall), 7th Edition, 2002.
- 9. Vasudeva A.S., Modern Engineering Physics, S.Chand and Co. Ltd., New Delhi, 2nd Edition, 2003.

EEE101	D A	SIC EL	ECTD14	CALAN	ID ELE	CTDON	ICC EN	CINEE	DINC	L	T 1	P C	7	
EEE101	BA	SIC EL	LC I KI	CAL AI	ID ELE	CIKUN	ICS EN	GINEL	KING	4	0	0 4		
Prerequisite	Basics	in electr	rical, elec	ctronics	and phys	sics.								
Objective(s)									engineer	ing like	•			
		ng and ch	naracteris	stics of e	electron o	devices,	electrica	ıl machir	nes					
Course Outco	me(s)													
CO1	Do the	he basic estimation of electrical quantities												
CO2	Interpr	ret the basic electrical and electronics circuits												
CO3	Under	derstand the DC and AC single phase and three phase fundamentals												
CO4	Under	nderstand the working principle of various Electrical AC and DC machines												
CO5			dge abo	ut variou	ıs Analo	g type m	easuring	instrum	ents and	house				
	Wiring													
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	L												
CO2	Н	H H H												
CO3	Н													
CO4	Н						M					Н	I	
CO5		L					M				Н			

Course Topics

ELECTRICAL CIRCUITS

Introduction to electric symbols and circuits - Ohm's Law - Kirchoff's Laws - analysis of DC circuits - introduction to AC circuits - Average Value, RMS value, power and power factor, single phase balanced and unbalanced circuits.

ELECTRICAL MACHINES

Principle of operation and characteristics of DC machines – single phase transformer - principle and operation of three phase and single phase induction motors.

ELECTRICAL MEASUREMENTS

Moving coil and moving iron instruments (Ammeter and Voltmeter) – dynamometer type wattmeter and energy meter.

BASIC ELECTRONICS

Conduction in semiconductor devices -working principle and characteristics of PN Junction diode, Zener diode, UJT, FET -half wave and full wave rectifiers.

DIGITAL ELECTRONICS

Binary number system-AND, OR, NOT, NAND, NOR Circuits - Boolean Algebra-Exclusive OR gate - half and full adders

INTEGRATED CIRCUITS

Introduction to op-amp (Operational amplifier) - inverting and non-inverting op amp – applications - scalar, adder, subtract or, differentiator, and integrator.

Text Books

- 1. B.L. Theraja, Electrical Technology Vol I and II, S. Chand and Co., 2005.
- 2. Edward Hughes, Electrical and Electronics Technology, Pearson Education Limited, Ninth edition, 2005.
- 3. D.P.Kothari and I.J.Nagrath,"Basic Electrical Engineering",Tata Mc Graw Hill Second Edition.
- 4. K.A. Muraleedharan, R. Muthusubramanian and S. Salivahanan, Basic Electrical and Electronics and Computer Engineering, Tata McGraw Hill, 1997.

- B.R. Guptha, Principles of Electrical Engineering, S. Chand and Co., 2002. 1.
- Robert L. Boylestad and Louis Nashelsky Electronics devices and Circuit Theory, Pearson Education, 8th Edition, 2.
- Malvino A P, "Electronic Principles", McGraw Hill International, 1998.
- 3. 4. S.Salivahanan, N.Sureshkumar and A.Vallavaraj, Electronic Devices and Circuits, TMH, 1998

CHY101	ENVIRONMENTAL SCIENCES							\mathbf{L}	T	P	C		
CHIIVI	(Common to all branches)										0	0	2
Prerequisite	Engineering Chemistry												
Objective(s)	Imparting knowledge on principles of environmental science and engineering Understanding the concepts of eco systems, bio diversity and impact of environmental pollution. Awareness on value education, population and social issues.												
Course Outcome(s)													
CO1	Know the importance of environmental studies and methods of conservation of natural resources.												
CO2	Describe the structure and function of an ecosystem.												
CO3	Identity the values and conservation of bio-diversity												
CO4	Explain the causes, effects and control m e a s u r e s of various types of pollutions.												
CO5	Select the appropriate methods for waste management												
Mapping of COs with POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1						M	Н						
CO2						L	Н	M					
CO3	L					Н	Н						
CO4		M				Н		L					
CO5			M			Н	Н						
Course Topics													

NATURAL RESOURCES

Definitions – scope of environmental sciences - forest resource – food resource – land resource – water – mineral resources - utilization of natural resource, impact on environment – conservation of natural resources.

ECOSYSTEM AND BIODIVERSITY

Concept – structure and function – energy flow in ecosystem – ecological succession – food chain – food web, ecological pyramids – biodiversity, definition, values, threats to biodiversity, conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Definition, causes, effects and control measures of air, water and soil pollution – thermal and nuclear pollution.

MANAGEMENT OF ENVIRONMENTAL POLLUTION

Solid waste management – treatment methods adopted for municipal sewage and industrial effluent – hazardous and biomedical waste management.

TOOLS FOR ENVIRONMENTAL MANAGEMENT

Environment impact assessment – precautionary and polluter pay principle - constitutional provision – (air, water and forest) - waste minimization techniques, cleaner technology options, bioremediation.

Text Book

1. Dhameja, S.K., Environmental engineering and Management, S. K. Kataria and sons, New Delhi, 1st edition 2004

- 1. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad, 1st edition 2001.
- 2. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co. USA, 2nd edition 2004.
- 3. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media., New Delhi, 2nd edition 2004.
- 4. Masters, G. M., Introduction to Environmental Engineering and Science, Prentice Hall, New Delhi, 2nd edition
- 5. Henry, J. G. and Heike, G. W. Environmental Science and Engineering, Prentice Hall International Inc., New Jersey, 1st edition 2005.

CSE102	CSE102 PROGRAMMING LANGUAGES						L	T	P C			
CSE102		FROGRAMMING LANGUAGES							2	0	0 2	
Prerequisite	Basics in Mathematics, Computing											
	To develop the basic programming skills											
Objective(s)	To understand the basics concepts of arrays and pointers											
	To implement the file concepts and operations											
Course Outcome(s)												
CO1	Demonstrate the knowledge of the steps in the development of computer program.											
CO2	Formulate the structure of C program.											
CO3	Apply the control structures, arrays strings, functions and pointers in C programming											
CO4	Demonstrate proficiency in computer programming.											
Mapping of COs with POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	L									
CO2	Н	Н	M									
CO3	Н				M							
CO4			M		M	M	M					
	Course Topics											

BASIC ELEMENTS OF C AND CONTROL STATEMENTS

Introduction to C - structure of C language – lexical elements of C - operators and expressions - operator precedence and associativity of operators -input and output functions-library functions – header files - simple computational problems - decision making: if statement – if-else statement - else-if ladder - switch statement – looping control structure - the break statement - operator - continue statement – go to statement – problems using control structures.

FUNCTIONS, PROGRAM STRUCTURES AND ARRAYS

Prototypes and functions – declaring, defining and accessing functions- parameter passing methods-recursion - storage classes -automatic variables – external variables – static and register variables – programs using functions - defining and processing an array - passing arrays to functions - multidimensional arrays - arrays and strings - enumerated data types-programs using sorting, searching and merging of arrays.

POINTERS, STRUCTURES AND UNIONS

Pointer fundaments - pointer declarations - passing pointers to functions - arrays and pointers - pointers and one-dimensional arrays - pointers and multidimensional arrays - operations on pointers - pointers and structures - dynamic memory allocation - command line arguments - programs using pointers with functions, arrays and structures - defining a structure - processing a structure - user - defined data types - union - nested structure - structures and pointers - passing structures to functions - self referential structures.

DATA FILES AND DATA STRUCTURES

Opening and closing a data file - creating a data file - high level file operations - processing and updation of data files - unformatted data files - low level programming - file handling programs - linked list - creation, insertion and deletion of elements - stack and queue implementation using linked list.

UNIX BASICS AND SHELL PROGRAMMING

Shell fundamentals - shell commands - shell decisions and repetitions - command line usage - wildcard expansion - redirection of I/O, pipes and filters - shell programming - simple scripts - specifying the interpreter - shell variables - the environment - control flow; test, if, for, while, case - command substitution - signal catching - shell functions - aliases - reading from the standard I/P - startup files - basename and dirname - expression evaluation.

Text Books

- 1. Byron S. Gottfried, Theory and Problems of Programming with C, Tata McGraw Hill, Second Edition, 1996.
- 2. Lowell Jay Arthur and Ted Burns, UNIX Shell Programming, John Wiley and Sons Canada, Ltd, Fourth Edition, 1997.

3. P. S. Deshpande, O.G. Kakde, C and Data Structures, Dreamtech Press, First edition, 2004

- 1. Brian W. Kerninghan and Dennis M.Richie, The C Programming language", Pearson Education, 2005.
- 2. Johnsonbaugh R.and Kalin M, Applications Programming in ANSI C, Pearson Education, Third Edition, 2003.
- 3. Behrouz A.Forouzan and Richard F.Gilberg, A Structured Programming Approach Using C, Brooks-Cole Thompson Learning Publications, Second Edition, 2001.
- 4. Bruce Molay, Understanding UNIX/LINUX Programming: A Guide to Theory and Practice, Prentice Hall, First Edition, 2002.
- 5. Glass, G., Ables, K.UNIX for Programmers and Users, Prentice Hall, 1999.
- 6. Stephen Kochan and Patrick Wood, UNIX Shell Programming, Pearson Education, Third Edition, 2003.

MEC103			EN	GINEE	RING	ИЕСНА	NICS			Ĺ		P C
MIECIUS			121	OINEE	ining i	IECIIA	.11105			3	0) 3
Prerequisite	Basics i	in scienc	e and an	alytical s	skills.							
Objective(s)	_	an intro neered st		on engin	eering n	nechanic	s concep	ts comm	only used	l in ana	lysis and	l design
Course Outco	me(s)											
CO1	Underst	tand and	Apply t	he funda	ımental l	Engineer	ing Mec	hanics p	rinciples	and the	ir know	ledge of
CO1	mathem	natical pr	inciples.									
CO2	Analyz	e the eng	ineering	problen	ns physic	cally and	mathem	atically.				
CO3	Applyir	ng the ac	quired k	nowledg	e in situ	ation to s	solve the	enginee	ring probl	lem.		
CO4	Underst	tanding o	of safety	and relia	ability co	oncepts i	n the des	igning o	f a solutio	on for a	situatio	n
CO5	_	to justify ed mann	_	n project	t in a for	mal repo	ort and pi	esent de	sign calcu	ılations	in a nea	t and
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	M	M			M				
CO2	Н	Н	Н	M	M							
CO3	Н		Н	Н	Н			M				
CO4	Н		M				M	M		M		M
CO5									M	M	M	M

STATICS OF PARTICLES

Six Fundamental principles and concepts - vector algebra- basics, external and internal forces, concurrent and non-concurrent coplanar forces - resultant and resolution static equilibrium of particles in 2-D and 3-D,

Course Topics

STATIC OF RIGID BODIES

Moment about point and about axis - Varignon's theorem - Static equilibrium of rigid body in 2-D and 3-D, free body diagram, supports and reactions - Problem formulation concept in 2-D and 3-D.

FRICTION

Frictional forces- Types- laws of dry friction- simple contact friction - Sliding block, wedges, ladder friction - rolling resistance - belt friction - Axle friction, disk friction - Examples.

PROPERTIES OF SURFACES AND SOLIDS

Centroids of lines - areas, volumes, composite bodies, Centre of gravity- center of mass - Area moment of Inertia - principal moment of inertia

DYNAMICS OF PARTICLES

Introduction – Kinematics of particles – Displacements, velocity and acceleration, their relationship - Equations of motions– Rectilinear motions - relative motion – Curvilinear motion – Kinetics of particles - Newton's second law – Equations of motion – rectangular components – Work Energy equation of particles.

Text Book

1. Beer, F.P., and Johnson, E.R., Vector Mechanics for Engineers – Statics and Dynamics, Tata McGraw Hill, 2007.

- 1. Merriam, J.L., Engineering Mechanics, Volume I Statics, and Volume II, Dynamics 2/e, Wiley International, 1998.
- 2. Irving, H., Shames, Engineering Mechanics, Statics and Dynamics, Prentice Hall of India Pvt. Ltd., 2004.

PHY 181]	PHYSIC	CS LABO	ORATO	RY			\mathbf{L}	T 1	P	C
FH1 101				(Comm	on to all	Branche	es)			0	0 3	3	1
Prerequisite	Basics	of Phys	ics										
Objective(s)	To dev	elop an	ability to	identify	, formu	late and	solve en	gineering	g problen	ns using	,		
Objective(s)	basic p	hysics											
Course Outco	me(s)												
CO1	Develo	op the ob	servatio	n and an	alytical s	skills							
CO2	Explai	n the var	ious pro	perties o	f matter								
CO3	Analyz	ze the dit	ferent o	ptical pro	operties.								
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12
CO1				M	L			Н	Н	Н			
CO2	Н			L				Н	Н	Н			
CO3	Н			L	L			Н	Н	Н			

Course Topics

- 1. To determine the acceleration due to gravity using Compound Pendulum
- 2. To determine the Rigidity Modulus of wire using Torsional Pendulum
- 3. To find thickness of the given two glass plates using single optic lever.
- 4. To determine the thermal conductivity of a bad conductor
- 5. To determine the refractive index of the material of the prism.
- 6. To find the number of rulings per cm length of the given transmission grating.
- 7. To determine the particle Size Using Laser
- 8. Verification of Logic operations OR ,AND, NOT, NOR, NAND Using Logic Gates
- 9. To determine the coefficient of viscosity of the liquid by Poiseuille's method
- 10. To determine the young's modulus of given material using Uniform Bending
- 11. To Determine the thickness of a given material using Air wedge method
- 12. To determine the focal length of a biconvex lens using Newton's Rings method
- 13. To determine the specific heat capacity of solid using method of mixers
- 14. Emissivity of the surface of the spherical calorimeter
- 15. To determine the velocity of ultrasonic waves in the liquid using ultrasonic Interferometer.
- 16. To calibrate the given ammeter using potentiometer
- 17. To verify the Laws of stretched string using sonometer
- 18. To determine the band gap energy of a semiconductor using Post office Box Method
- 19. To study the characteristics of common emitter Transistor
- 20. To study the characteristics of FET

CSE181		PRO	GRAM	MING I	ANGU	AGES I	AROR	ATORY		L		P C			
CSETOI		110	GIVI		2711100	IGES I	TIDOIC	HOMI		0	0 3	3 1			
Prerequisite	Basics	in comp	uting pr	ogram.											
Objective(s)	intellig unman	gence me	ethods fo ems, foo	r robots. cusing or	It covers	s both th	eory and	l practice	e of an	re often	quite dif	ferent			
G 0 1		ontrol th	ontrol theory formulations												
Course Outco	me(s)														
CO1	Work	in variou	s applica	ation pac	kages										
CO2	Write	a C prog	ram effe	ctively u	sing arra	ys and p	ointers								
CO3	Perfor	m basic ι	ınix con	nmands a	nd shell	program	ming.								
Mapping of C	Os with	POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Н								L	Н					
CO2		M	Н	M				Н	L						
CO3					L				L						
					Course	Topics					•	•			

1. APPLICATION PACKAGES

- a. Word Processing
- b. Spreadsheet
- c. Powerpoint
- d. Database Management

2. C PROGRAMMING

- a. Basics
- b. Operators and Expressions
- c. I/O formatting
- d. Control Statements

3. ARRAYS AND FUNCTIONS

- a. Arrays
- b. String Manipulation
- c. Functions

4. POINTERS, STRUCTURES AND FILES

- a. Pointers
- b. Structures and Unions
- c. File Handling

5. UNIX PROGRAMMING

- a. Basic Unix Commands
- b. Basic Shell Programming

				MAT	HEMA'	TICS III				L	T	P	C
MAT209	(Con	nmon to	Bio-Tecl	nnology,	Chemic	al Engg.	, Civil E	ngg., CS	SE, EEE,	3	1	0	4
				ICE and	Mechar	nical Eng	g.)						
Prerequisite		natics I(l		//									
Objective(s)	pro eq eq To Se To Fo To its	oblems - uations, uation su o study F o underst eries o unders o unders o unders o know existence	in partice to find couplect to ourier see and Fount tand the ansforms the var see how to the various	cular, to or numer given co eries and rier Tran e propert for relat ious des	show ho ically appointed in solve both sform, the ices of liked signar finitions to inverse the show how the signar finitions to inverse the signar finitions to inverse the signar finitions the signar finitions to inverse the signar finitions to inverse the signar finitions the signar finition finition finition finition finitions the signar finition fi	w to transproxima s, and to cundary when converting Fourier folls of the e Fourier	rislate prote the so interpret values progence is Transfor Transfor	oblems in lution of the solu oblems. ssues, re- m, use Transfe orm.	n solving nto the lar the resultions obta lation to I these to orms, suf e Fourier	nguage ting di ined. Fourier derive	of diffe fferentia	ons	for
Course Outco													
CO1		ate integ	rals and	solve bo	undary v	alue pro	blems us	ing Lapl	ace transf	form			
CO2	Solve		d type o	f first o	rder par	tial diff	erential		s and hig		rder		
CO3	Apply	the cond	cept of F	ourier se	ries to fi	nd the su	ım of cei	rtain seri	es.				
CO4	Solve	differen	ce equati	ons usin	g Z-trans	sform							
CO5	Find F	Fourier, S	Sine and	Cosine t	ransform	ns of give	en functi	ons					
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12
CO1	Н	L		M	M								
CO2	L				L								Н
CO3	M	M			M								
CO4	L	M			L								
CO5	Н	L		M	L								L

LAPLACE TRANSFORM

Definition of Laplace Transform - Linearity property - condition for existence of Laplace Transform - First and Second Shifting properties - Laplace Transform of derivatives and integrals - Unit step functions - Dirac delta-function - Differentiation and Integration of transforms - Convolution Theorem - Inversion - Periodic functions - Evaluation of integrals by Laplace Transform - Solution of boundary value problems.

Course Topics

PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE – Solution of std types of first order PDE – Lagrange's linear equation – Linear PDE of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions – General Fourier series – odd and even functions – Half range sine and cosine series – complex form of Fourier series – Parseval's identity – Harmonic analysis

Z-TRANSFORM

Z-transform – elementary properties – Inverse Z-transform – convolution theorem – formation of difference equation – solution of difference equation using Z-transform.

FOURIER TRANSFORM

Fourier Integral formula - Fourier Transform - Fourier sine and cosine transforms - Linearity, Scaling, frequency

shifting and time shifting properties - Self reciprocity of Fourier Transform - Convolution theorem - Application to boundary value problems.

Text Books

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 8th Edn., 2001.
- 2. Arumugam, S., Thangapandi Isaac, A., Somasundaram, A., Engineering Mathematics Volume II, Scitech Publications (India) Pvt. Ltd., Chennai, 1st Edn., Reprint 2000.

- 1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 37th Edn. 2004.
- 2. Venkataraman, M. K., Engineering Mathematics –III A, The National Publishing Company, Chennai, 11th Edn. 2002.
- 3. Venkataraman, M. K., Engineering Mathematics III B, The National Publishing Company, Chennai, 13th Edn. 1999.

MEC201			ST	RENG	TH OF N	MATER	IALS			L 3		P C 0 4
Prerequisite		ts must k	now the	basic kn	owledge	in Engi	neering l	Mechani	cs and B		1 ') 4
	deform constit	able solutive bel	ids; inclu navior.	uding sta	of the function of the	librium,	geometr	y of defe	ormation	, and ma		
Objective(s)	problem To disc types of combin	ms in solcuss the of structured loadild the n	id mecha basic ma iral mem ng.	anics. echanica ibers sub	osure to I princip pjected to ical back	oles unde o axial lo	erlying n oad, tors	nodern a ion, beno	pproache ding, trai	es for de	esign of shear, an	various d
Course Outco	me(s)											
CO1	Under		ress Vs th and e	_	raph and	d can be	able to	determi	ne yield	strengt	h,	
CO2		nine saf			ses, then	mal stre	ess for o	compoun	nd and o	composi	te	
CO3			concep of these		rinciples	applied 1	to memb	ers unde	r variou	s loading	gs	
CO4	Deterr	nine nor	mal and	shear str	ess on ar	ny plane						
CO5					sure ves		r variou	s loading	gs			
CO6		rstand s			bending					types o	of	
CO7					s, and to its effec		he result	ts in a pr	ofession	al manne	er	
CO8					er torsic ering pro		apply st	ress con	centratio	on factor	rs	
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12
CO1				M					L	L		L
CO2				L				L		M		M
CO3	Н							L				M
CO4			M					M		L		M
CO5			L					M		L		M
CO6					L			L		M		M
CO7			L					M		L		M
CO8			M					Н		L		M

Course Topics

STRESS, STRAIN AND DEFORMATION IN SOLIDS

Tension, compression and shear stresses – Hook's law – stress- ultimate stress and working stress – elastic constants and relationships between them – composite bars – temperature stresses – strain energy due to axial load – stress due to suddenly applied load and impact load.

TWO DIMENSIONAL STATE OF STRESS

Two dimensional state of stress at a point – normal and shear stresses on any plane, principal planes and principal stresses – graphical method – two dimensional state of strains at a point, principal strains and their directions – stresses and deformations in thin cylinders and spherical shells due to internal pressure.

BEAMS

Types of beams and supports – shear force and bending moment at any cross section, sketching of shear force and bending moment diagrams for cantilever, simply supported and over hanging beams for any type of loading –

relationship between rates of loading - shear force and bending moment.

STRESSES IN BEAMS

Theory of simple bending – analysis for bending stresses – load carrying capacity of beams – proportioning sections – flitched beams – strain energy due to bending moment – shear stress distribution – strain energy due to transverse shear force.

STRESSES DUE TO TORSION

Elastic theory of torsion – stresses and deformation in solid circular and hollow shafts – stepped shafts – composite shaft – stress due to combined bending and torsion– strain energy due to torsion-deformations and stresses in helical springs – design of buffer springs -leaf springs

Text Book

1. Popov, E.P., Engineering Mechanics of solids, Prentice Hall of India, New Delhi, 1996.

- 1. Punmia, B. C., Strength of Materials, Laxmi Publications, 1992.
- 2. Kazimi, S. M. A., Solid Mechanics, Tata McGraw Hill Book Co Ltd., 1998.
- 3. Rajput, Strength of Materials, S. Chand Publications, 1999.
- 4. Bansal, R. K., Strength of Materials, Laxmi Publications, 2003.
- 5. Gere, Mechanics of Materials, Thomson Publications, 2006.
- 6. Junarkar, Mechanics of Structure, Vol.-I, Charator Publications, 2005.

MEC203		1	THE I	месна	NICSA	ND MA	CHINE	'PV		L	T :	P C
							CIIIIVE			3	1	0 4
Prerequisite		knowle	_									
	To un	derstand	the varie	ous prop	erties of	the fluid	l.					
	To an	alyze ar	nd appre	ciate the	e comple	exities in	nvolved	in solvi	ng the f	luid flo	w proble	ems.
Objective(s)	To stu	idy the	mathem	atical te	chniques	already	in vog	ue and a	apply the	m to th	ne soluti	ons of
Objective(s)	practio	cal flow	problem	S.								
	To un	derstand	the ene	ergy excl	nange pr	ocess in	fluid me	chanics	handling	incomp	ressible	fluids.
									umps and			
Course Outco	ome(s)											
CO1	Be abl	le to calc	ulate de	nsity and	l viscosit	y for flu	ids					
CO2		e/calcula										
CO3							ıt fluid f	low pher	nomenon	and flo	W	
		es (lamir										
CO4									neasuring			
CO5							els throug	gh simpl	e solution	ns using		
		r Stokes					1 .	1				
CO6		principl								1		
CO7				iid mach	inery and	d able to	suggest	the type	(pump/ti	arbine)		
Manning of (ling to no	eea									
Mapping of C	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	102	103	104	M	100	107	100	109	1010	1011	M
CO2	L			L	171					M		171
CO ₂	H			L	Н					171		M
CO4	Н			L	H			L			M	L
CO5	M			Н	L			M			L	M
CO6	Н			11	H			L			M	L

CO7	Н	M	M	L				L
				Course	e Topics			

BASIC CONCEPTS AND PROPERTIES

Fluid – definition, distinction between solid and fluid - units and dimensions, properties of fluids - density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, vapour pressure, capillary and surface tension - fluid statics - concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges.

FLUID KINEMATICS AND FLUID DYNAMICS

Fluid kinematics - flow visualization, lines of flow, types of flow, velocity field and acceleration, continuity equation (one and three dimensional differential forms) - equation of streamline, stream function, velocity potential function, circulation, flow net, fluid dynamics - equations of motion, Euler's equation along a streamline, Bernoulli's equation, applications - Venturi meter, Orifice meter, Pitot tube - dimensional analysis - Buckingham's π theorem- applications - similarity laws and models.

INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier-Stoke's equation (Statement only) - shear stress, pressure gradient relationship - laminar flow between parallel plates, Laminar flow through circular tubes (Hagen Poiseulle's) - Hydraulic and energy gradient - flow through pipes - Darcy -Weisback's equation - pipe roughness -friction factor- Mody's diagramminor losses - flow through pipes in series and in parallel - power transmission - boundary layer flows, boundary layer thickness, boundary layer separation - drag and lift coefficients.

HYDRAULIC TURBINES

Fluid machines-definition and classification - exchange of energy - Euler's equation for turbo machines - construction of velocity vector diagrams - head and specific work - components of energy transfer - degree of reaction.

Hydro turbines- definition and classifications - Pelton wheel, Francis turbine, propeller turbine, Kaplan turbine - working principles - velocity triangles, work done, specific speed, efficiencies, performance curve for turbines.

HYDRAULIC PUMPS

Pumps- definition and classifications - Centrifugal pump - classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - reciprocating pump- classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitations in pumps - rotary pumps - working principles of gear and vane pumps, performance of positive displacement pump.

Text Book

1. Streeter, V.L., and Wylie, E.B., Fluid Mechanics, McGraw-Hill, 1983.

- 1. Kumar, K.L., Engineering Fluid Mechanics, Eurasia Publishing House (P) Ltd, New Delhi, 7th edition, 2000.
- 2. Vasandani, V.P., Hydraulic Machines Theory and Design, Khanna Publishers, 1992.
- 3. Bansal, R.K., Fluid Mechanics and Hydraulics Machines, Laxmi publications (P) Ltd, New Delhi, 5th edition,1995.
- 4. White, F.M., Fluid Mechanics, Tata McGraw-Hill, c, 5th Edition, 2003.
- 5. Ramamirtham, S., Fluid Mechanics and Hydraulics and Fluid Machines, Dhanpat Rai and Sons, Delhi, 1998.
- 6. Som, S.K., and Biswas, G., Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw-Hill, New Delhi, 2nd Edition, 2004.

A LIT 201		AUTA	MODII	T MAN	пелет	TIDING	TEAT	NOI OC	117	L	T 1	P C
AUT 201		AUIO	MOBIL	L MAN	UFACI	UKING	TECH	NOLOG	τY	3	1 () 4
Prerequisite	Basic r	nanufact	uring pro	ocess								
Objective(s)	To lear	n about	various o	casting, f	orming a	and heat	treatmer	t proces	s for aut	omotive	applicat	ion.
Course Outco	ome(s)											
CO1	Ability	to theor	ize vario	us type	of castin	g proces	s with su	itable sk	etch			
CO2	Capabl	e to choo	ose suita	ble heat	treatmen	t technic	ques for o	different	applicat	ions.		
CO3	Familia	arize on	different	types of	welding	g, brazing	g and sol	dering p	rocess.			
CO4	Acquir	e the kno	wledge	on bulk	deforma	tion proc	ess.					
CO5	Able to	describ	e the tecl	hniques	of sheet	metal for	rming pr	ocess.				
Mapping of C	COs with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L			M								
CO2	M	M										
CO3					M						M	
CO4			M								M	
CO5									T.			

CASTING FUNDAMENTALS OF SAND CASTING

Mold Casting Processes - mold types - sand casting types - pattern designs/mold designs - gating systems - cores - solidification of metals - cast structures - fluidity of molten metals -

Course Topics

heat transfer - shrinkage - casting defects - foundry methods - cast alloys - Investment Casting Processes - ceramic mold casting - plaster mold casting - shell mold casting - centrifugal casting - squeeze casting - turbine blade casting methods

CASTING HEAT TREATMENT

Ferrous alloys - Non-ferrous alloys - heat treatment processes - cleaning/finishing methods - inspection/testing methods - allowance and tolerance - no destruction inspection

FABRICATION PROCESS

Classification of welding process - principle of gas welding - arc welding - resistance welding - solid state welding - thermo-chemical welding - radiant energy welding - brazing and soldering - thermal cutting of metals or alloys.

BULK DEFORMATION PROCESSES

Forging - classification of forging processes, forging defects and inspection - rolling - classification of rolling processes, rolling mill, rolling of bars and shapes - extrusion - classification of extrusion processes, extrusion equipments.

SHEET METAL FORMING PROCESS

High velocity forming - explosive forming, electro hydraulic forming - magnetic pulse forming - pneumatic - mechanical high velocity forming.

Text Book

1. Jain, R.K., Production Technology, Khanna Publishers, 2002.

- 1. Hajra Choudhry, Elements of Workshop Technology-Vol I, Dhanpat Rai and Sons, 1992.
- 2. HMT Production Technology, Tata Mc Graw-Hills Publishing Co. Ltd, 1994.
- 3. Chapman, W.A.J., Workshop Technology-Vol II, Oxford and IBH Publishing.

AUT207	,	ГНЕRМ	IODVN	AMICS	AND TI	перм	I ENC	INEEDI	INC	L	T I	P C
AU1207		IIIEKW	IODINA	AMICS	AND II	HERWIA	L ENG	IIIEEKI	III G	3	0 (4
Pre requisite	Unders	standing	of therm	nodynam	ic laws a	and cycle	es					
Objective(s)	To lear	rn about	thermod	ynamic	air stranc	ded, stea	m power	cycles.				
Objective(s)	To imp	art knov	vledge o	n refrige	ration, a	ir condit	ioning a	nd air co	mpresso	r.		
Course Outco	me(s)											
CO1	To app	ly the la	ws of the	ermodyn	amic in	automob	ile work	ing oper	ations.			
CO2	To con	ceptuali	ze differ	ent types	s of therr	nodynan	nic air st	andard c	ycles.			
CO3	To cap	able to i	lluminat	e steam j	power cy	cle and	steam no	zzles.				
CO4	To des	ign and a	analyze o	of refrige	eration a	nd air co	nditionir	ig proble	ms.			
CO5	To scr	utinize o	f efficier	ncy, pres	sure, p-v	diagran diagran	ns of air	compres	sor.			
Mapping of C	Os with	POs										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н											
CO2				Н	L							
CO3			M	M								
CO4		M					L			M	Н	
CO5				M								

Course Topics

BASIC THERMODYNAMICS

Systems, zeroth law, first law, steady flow energy equation. Heat and work transfer in flow and non flow processes. Second law, Kelvin – planck statement – clausies statement – concept of entropy, clausius inequality, entropy change in non-flow processes

AIR STANDARD CYCLES

Otto, diesel, dual and Brayton cycles. Air standard efficiency, mean effective pressure, reciprocating compressors.

STEAM POWER CYCLES AND STEAM NOZZLES

Properties of steam – rankine cycle – steam nozzles – condition for maximum discharge – flow of steam through nozzles

REFRIGERATION AND AIR CONDITIONING

Principles of psychrometry and refrigeration – vapour compression – vapour absorption – coefficient of performance, properties of refrigerents – basic principle and types of air conditioning

AIR COMPRESSORS

Operation of a single stage reciprocating compressor, work input through p-v diagram and steady state steady flow analysis, effect of clearance and volumetric efficiency, adiabatic, isothermal and mechanical efficiencies, multistage compressor, saving in work, optimum intermediate pressure, inter colling, minimum work for compression (use of standard thermodynamic tables, Mollier diagram and refrigerant property tables are permitted)

Text Books

- 1. Kothandaraman, C.P., Domkundwar, S., and Domkundwar, A.V., A course in Thermal Engineering, Dhanpat Rai and Sons, Fifth edition, 2002.
- 2. Rajput, R.K, Thermal Engineering, S.Chand publishers, 2000

- 1. Holman, J.P., Thermodynamics, McGraw-Hill, 1985.
- 2. Rogers, Engineering Thermodynamics, ELBS, 1992.
- 3. Arora, C.P., Refrigeration and Air conditioning, Tata McGraw-Hill, New Delhi, 1994.
- 4. Sarkar, B.K., Thermal Engineering, Tata McGraw-Hill, New Delhi, 1998

MEC281		STRE	NGTH (F MAT	ERIAL	S / FLU	ID MEC	CHANIC	CS	L	T 1	P C
MEC281				LA	BORAT	ORY				0	0 3	3 2
			_		nanics, E	ngineeri	ng Mech	anics, St	rength o	f		
Prerequisite	Mater	ials and	Mathem	atics								
		knowled										
					operties	of mater	rials and	behavio	or of mate	erials		
		loading										
				ciples be	hind Flo	w and M	achine E	Experime	ents and o	develop	an aptitu	de
Objective(s)		search w	_									
		ırn the te			_	-	•	al set-up)			
		ırn writir	_	-		-						
		velop bas	sic chara	cter of h	onesty ir	ı observi	ng/recor	ding/rep	orting re	sults		
Course Outco												
CO1		ow the d										
CO2		ocure kno					d in expe	eriments				
CO3		alyze the										
CO4		spect the										
CO5	Test th	he efficie	ency of v	arious m	neter invo	olved in	experim	ents				
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M		L			L						L
CO2	L		M	L				M		M	M	M
CO3	M	M	Н	M				M	L	L	L	Н
CO4			L					L	L	Н		
CO5			M					M	L	L		

Course Topics

Strength of Materials Laboratory

- 1. Tension test on mild steel rod
- 2. Double shear test on Mild steel and Aluminum rods
- 3. Torsion test on mild steel rod
- 4. Impact test on metal specimen
- 5. Hardness test on metals Brinell and Rockwell Hardness Number
- 6. Deflection test on beams
- 7. Compression test on helical springs
- 8. Strain Measurement using Rosette strain gauge
- 9. Effect of hardening- Improvement in hardness and impact resistance of steels.
- 10. Tempering- Improvement Mechanical properties Comparison
- 11. Unhardened specimen
- 12. Quenched Specimen and
- 13. Quenched and tempered specimen.
- 14. Microscopic Examination of
- 15. Hardened samples and
- 16. Hardened and tempered samples.

Fluid Mechanics Laboratory

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturimeter.
- 3. Calculation of the rate of flow using Rota meter.
- 4. Determination of friction factor for a given set of pipes.
- 5. Conducting experiments and drawing the characteristic curves of Centrifugal pump / Submergible pump.
- 6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
- 7. Conducting experiments and drawing the characteristic curves of Gear pump.
- 8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
- 9. Conducting experiments and drawing the characteristics curves of Francis turbine.

10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

MEC282		MANU	FACTU	RING T	TECHN(OLOGY	LABO	RATOR	RY	L 0	T I 0 3			
Prerequisite	Basics	of Man	ufacturir	ng Techn	ology.									
Objective(s)		velop ar ing prac		to oper	ate and	perform	machini	ng, four	ndry, we	elding an	ıd			
Course Outco	me(s)	to nonforme an anti-one varies both and drilling magabine												
CO1	Able t	e to perform operations using lathe and drilling machine												
CO2	Able t	o handle	tools an	d equipr	nents in	foundry	and smit	hy pract	ice					
CO3	Able t	o perfori	n weldir	ng and pl	umbing	operation	ns							
Mapping of C	Os with	POs			-	•								
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M			Н	Н		L					Н		
CO2	Н		M	Н	Н		M							
CO3	M		M	M	Н		Н					M		
	•	•		•	Course	Topics	•		•	•	•			

MACHINING PRACTICE

Lathe: Plain turning, step turning, taper turning, parting off, knurling, thread cutting, eccentric turning, Boring, Counter boring and counter sinking, cutting force measurement, special operations in capstan and turret lathe. **Drilling:** Through hole, blind hole, reaming, tapping, cutting force measurement

FOUNDRY PRACTICE

Study of moulding tools, equipments, furnaces, preparation of moulding sand, exercise: flange, gland, bush, straight pipe, bend pipe, tee pipe and grooved pulley.

SMITHY PRACTICE

Study of forging tool - making a square out of round rod, making an L-bend, making a hook, square headed bolt, hexagonal headed bolt and V-clamp.

WELDING PRACTICE

Study of welding tools, equipments, exercise in Arc welding and Gas welding: Lap joint, butt joint, V-joint and Tee joint

PLUMBING PRACTICE

Study of plumbing tools – laying pipe connection to the suction side of a pump inlet and the delivery side of a pump outlet – practice in mixed pipe connections: metal, plastic and flexible pipes used in household appliances.

SEMESTER-IV

			1	NIME	PICAL I	METHO	DC			L	T 1	P C		
MAT211		(Comm		. –	_	ICE and		ical Eng	o)	3	0 (
Prerequisite			lge in Pa						and integ			_		
Objective(s)	To und To and imple	derstand alyze the mentatio	the basic error for n of num	r a partio nerical al	cular nun gorithm	nerical n s	nethod a	nd appre	ential equiciate the e		cy in			
Course Outco	me(s)													
CO1		monstrate understanding of common numerical methods and how they are used obtain approximate solutions to otherwise intractable mathematical problems. ply numerical methods to obtain approximate solutions to mathematical												
CO2		ply numerical methods to obtain approximate solutions to mathematical blems.												
CO3	interp	rive numerical methods for various mathematical operations and tasks, such as erpolation, differentiation, integration, the solution of linear and nonlinear equations, alyze and evaluate the accuracy of common numerical methods.												
CO4	Analy	ze and e	valuate ti	he accur	acy of co	ommon r	umerica	l method	ls.					
CO5			nerical n											
CO6		efficient native wa		ocument	ed Matla	ab code a	and pres	ent num	erical resi	ults in a	ın			
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	L		L	M									
CO2	Н		M	M	M									
CO3	Н		M	M										
CO4	Н	L		M	M									
CO5	M		M	Н	Н		M			M		Н		
CO6	M			M	Н		M					Н		
					Course	e Topics								

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS

Review of open end methods, bracketed end methods - the intermediate theorem (excluding proof) - iterative method - False position method - Newton - Raphson method for single variable and for simultaneous equations with two variables - Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobi and Gauss - Seidel methods - Eigen value of a matrix by Power method.

INTERPOLATION

Newton forward and backward difference formulae - Newton's divided difference formulae - Lagrange's polynomials - Stirling's Central difference formulae.

NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials - Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules - Two and Three point Gaussian quadrature formulae - Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS

Single step Methods – Taylor Series, Euler and Modified Euler, Runge – Kutta method of order four for first and second order differential equations - Multistep Methods-Milne's predictor and corrector method.

BOUNDARY VALUE PROBLEMS

Finite difference solution for the second order ordinary differential equations - Finite difference solution for one dimensional heat equation (both implicit and explicit) , One-dimensional wave equation and two-dimensional

Laplace and Poisson equations.

Text Books

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 8th Edn., 2001.
- 2. Arumugam, S., Thangapandi Isaac, A., Somasundaram, A., Numerical Methods, Scitech Publications (India) Pvt. Ltd., Chennai, 2nd Edn., Reprint 2006, 2001.

References

- 1. Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, New Age International (P) Ltd., New Delhi, 4th Edn., 2003.
- 2. Francis Scheid, Theory & Problems of Numerical Analysis, Schaum's Outline Series, Singapore, 1989.

AUT202			M	CUAN	ICS OF	МАСИ	INEC			L	T 1	PC		
AU 1 202			1711	ECHAI	ics or	MACII	IIIES			3	1 () 4		
Prerequisite	Basic k	nowledg	ge in Eng	gineering	g Mecha	nics								
	To und	erstand t	he layou	t of link	ages in t	he assen	nbly of a	system						
	To anal	lyze the	motion r	esulting	from a s	pecified	set of lin	nkages ir	a mech	anism				
Objective(s)							its moti	ons						
					nechanis									
	To stuc	ly the dif	ferent ty	pes of g	ears and	their ter	minolog	y						
Course Outco														
CO1	Discuss	cuss the fundamentals of various mechanisms.												
CO2	Examir	amine the velocity and acceleration diagram for a mechanism												
CO3	Constru	act the ca	am profil	le										
CO4	Analys	es the ge	ar train											
CO5	Predict	the effec	et of fric	tion in c	lutches									
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н		L	M										
CO2	M	Н	M											
CO3	M		L	M										
CO4	Н	M	Н				M							
CO5	M	M	M	L										

MECHANISMS

Machine Structure - Kinematic link, pair and chain - constrained motion - slider crank and crank rocker mechanisms - inversions - applications - Kinematic analysis and synthesis of simple mechanisms - Degrees of freedom - Grueblers criteria

Course Topics

FRICTION

Friction in screw and nut - Pivot and collar - Thrust bearing - Plate and disc clutches - Belt (flat and V) and rope drives - Ratio of tensions - Effect of centrifugal and initial tension - Condition for maximum power transmission - Open and crossed belt

GEARING AND CAMS

Gear profile and geometry - Nomenclature of spur and helical gears - Law of gearing - Interference - Requirement of minimum number of teeth in gears - Gear trains - Simple and compound gear trains - Determination of speed and torque in epicyclic gear trains - Cam profile - Different types of followers.

BALANCING

Static and dynamic balancing - Single and several masses in different planes - Primary and secondary balancing of reciprocating masses - Single and multi cylinder engines - Inline, V and W arrangements of engines.

VIBRATION

Free, forced and damped vibrations of single degree of freedom systems - Force transmitted to supports - Vibration isolation - Vibration absorption - Torsional vibration of shaft - Single and multi rotor systems - Geared shafts - Critical speed of shaft.

Text Books

1) Ballaney, P.L., "Theory of Machines", Khanna Publishers, New Delhi, 1998.

References

- 1) Rao, J.S. and Dukkipati, R.V., "Mechanism and Machine Theory", Second Edition, Wiley Eastern Ltd., 1992.
- 2) Malhotra, D.R. and Gupta, H.C., "The Theory of Machines", Satya Prakashan, Tech. India Publications, 1988.
- 3) Gosh, A., and Mallick, A.K., "Thoery of Machines and Mechanisms", Affiliated East West Press, 1989.
- 4) Shigley, J.E. and Uicker (K), J.J., "Theory of Machines and Mechanisms", McGraw Hill 1980.
- 5) Burton Paul, "Kinematic and Dynamic of Planer Machinery", Prentice Hall, 1979.

AUT204		ATI	ΤΟΜΟ	TIVE E	UELS A	ND I III	RDICAT	PIONS		L	T]	P	C	
AU 1204		AU	TOMO	IIVEF	UELS A	ND LUI	DKICAI	IONS		3	0	0	3	
Prerequisite	Fundan	nental kr	nowledge	e in fuels	s and lub	ricants								
Objective(s)					automot									
Objective(s)	To stuc	ly the pro	operties,	fuel rati	ng, coml	oustion,	alternativ	ve fuels	and testi	ng of fue	els.			
Course Outco														
CO1	Unders	tand abo	ut petrol	leum refi	ining pro	cess and	l automo	tive lubr	icants.					
CO2	Able to	le to test and analyze the properties of fuels and lubricants.												
CO3	Attain 1	tain knowledge about fuel additives and mechanism of combustion.												
CO4	Explore	rplore alternative fuels to reduce emission from the vehicle.												
CO5	Ability	to under	rstand sy	nthesis, o	oxidation	, deterior	ation and	l degrada	tion of lu	ıbricants				
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12	
CO1	L													
CO2		M								Н				
CO3				L					L					
CO4			M		Н			L			M			
CO5				M									_	
					Course	e Topics		•		•		•		

MANUFACTURE OF FUELS AND LUBRICANTS

Structure of petroleum refining process - classification of petroleum fuels - thermal cracking - catalytic cracking - polymerization - alkylation isomerisation - blending products of refining process - Manufacture of lubricating oil base stocks - manufacture of finished automotive lubricants.

PROPERTIES & TESTING OF FUELS

Thermo-chemistry of fuels - properties and testing of fuels & Lubricants - relative density - calorific value - fire point - distillation - vapour pressure - flash point spontaneous ignition temperature - viscosity - pour point - flammability - ignitability diesel index - API gravity - aniline point Viscosity index.

FUEL RATING & COMBUSTION

Cetane rating - Fuel requirements additive - mechanism, requirements of an additive petrol fuel additives and diesel fuel additives - specifications of fuels SI Engine - flame propagation and mechanism of combustion - normal combustion knocking - octane - rating - fuel requirements CI engine - mechanism of combustion - diesel knock

ALTERNATE FUELS

Use of alternate fuel in engines- LPG, CNG need for alternate fuels - availability & their properties - general use of alcohols, LPG, CNG, LNG, hydrogen, ammonia, vegetable oils - bio diesel and bio gas - merits and demerits of alternate fuels. Introduction to alternate energy sources like, electric vehicle, hybrid, fuel cell & solar cars

LUBRICANTS

Classification of lubricating oils, properties of lubricating oils, tests on lubricants, Grease- classification, properties, test. Specific requirements for automotive lubricants, oxidation, deterioration and degradation of lubricants, additives, synthetic lubricants.

Text Books

- 1. Internal Combustion Engineering by Ganesan V, Tata McGraw -Hill Publishing Co., New Delhi.
- 2. Lubrication, Raymond G.Gunther, Chipton Book Co.- 1971

References

- 1. Fuels Solids, Liquids, Gaseous by Brame, J.S.S. and King, J.G
- 2. Fuels and Fuel Technology by Francis, W, Vol. I & II
- 3. Modern Petroleum Technology by Hobson, G.D. & Pohl. W
- 4. Lubrication–A practical guide to lubricant selection by A.R. Lansdown, Pergamon press 1982
- 5. Energy today & tomorrow by Maheswar Dayal, I & B Horishr India.
- 6. Internal Combustion Engineering and Air Pollution by Obert. E.F., International Book Co., 1988.

AUT205				AUTON	10TIVE	г СНАС	SIS			L	T	P	C		
						CHAS	515			3	0	0	3		
Prerequisite			chine, M												
Objective(s)	The s types State Shall Stude	of steer modern be able	ing gear drive lin to under gain kno	apprecial apprecial box etc. stand ne	ation and	pension.			of front a						
Course Outco	me(s)														
CO1		Understand the construction details of various types of automotive chassis and basic functions of subsystems in the chassis Demonstrate a working knowledge of different steering geometry, steering system and various													
CO2		onstrate of front		g knowl	edge of	different	steering	geometr	ry, steerir	ng syste	m and v	ariou	us		
CO3				n moder	n drive 1	ine.									
CO4	Study	about t	he variou	ıs suspe	nsion sys	stems									
CO5							power br	ake, assi	sted brak	es, disc	brakes.				
Mapping of C	Os with	POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	O12		
CO1	Н	M	L	M					L						
CO2	L	Н		Н					M		M				
CO3	Н			M					M		L				
CO4	L	M	L	M					Н						
CO5		Н		M					Н		M				
					Course	e Topics									

INTRODUCTION

Types of chassis layout with reference to power plant locations and drive, Vehicle frames, various types of frames. Constructional details, Materials. Testing of vehicle frames. Unitised frame body construction: Loads acting on vehicle frame.

FRONT AXLE AND STEERING SYSTEM

Types of front axles. Construction details. Materials. Front wheel geometry viz. Castor, Camber, King pin inclination, Toein Conditions for true rolling motion of wheels during steering. Steering geometry. Ackerman and Davis steering system. Constructional details of steering linkages. Different types of steering gear boxes. Steering linkages and layouts. Power and power assisted steering - Steering of crawler tractors.

DRIVE LINE AND DIFFERENTIAL

Effect of driving thrust and torque reactions. Hotch kiss drive, torque tube drive and radius rods. Propeller shaft. Universal joints. Constant velocity universal joints. Front wheel drive. Different types of final drive. Worm and worm wheel, straight bevel gear, Spiral bevel gear and hypoid gear final drives. Double reduction and twin speed final drives. Differential principles. Construction details of differential unit. Non-slip differential. Differential locks - Differential housings.

REAR AXLE AND SUSPENSION SYSTEM

Construction of rear axles. Types of loads acting on rear axles. Full floating. Three quarter floating and semifloating rear axles. Rear axle housing. Construction of different types of axle housings. Multi axled vehicles. Construction details of multi drive axle vehicles. Need of suspension system - Types of suspension - Suspension springs - Constructional details and characteristics of leaf, coil and torsion bar springs - Independent suspension - Rubber suspension - Pneumatic suspension - Shock absorbers

BRAKING SYSTEM

Classification of brakes - Drum brakes and Disc brakes. Constructional details - theory of braking, Mechanical hydraulic and pneumatic brakes - Servo braker. power and power assisted brakes - Different types of retarders like eddy current and hydraulic retarder-Anti lock braking systems.

Text Book

1) Heldt P.M., "Automotive chassis", Chilton Co., New York, 1990.

- 1) Steed W., "Mechanics of Road vehicles", Illiffe Books Ltd., London, 1960.
- 2) Newton Steeds & Garrot, "Motor vehicles", Butterworths, London, 1983.
- 3) Judge A.W., "Mechanism of the car", Chapman and Halls Ltd., London, 1986.
- 4) Giles.J.G., "Steering, Suspension and tyres", Iliffe Book Co., London, 1988.
- 5) Crouse W.H., "Automotive Chassis and Body", McGraw Hill. Newyork. 1971.

AUT206			A	нтом	OTIVE	FNCIN	FC I			L	T	P	C		
AU 1200			A	TO TOM	OTIVE	ENGIN.	LS-1			3	0	0	3		
Prerequisite	Basic k	nowledg	ge about	IC engin	ies										
Objective(s)									types of e	engines.					
Objective(s)	It also i	includes	combust	tion, eng	ine fricti	on, and i	ts lubric	ation.							
Course Outco	me(s)														
CO1	Describ	e the ba	e the basics of automobile components and its working												
CO2	Analyze	the air standard cycle and correlate with actual engine cycle. the working of various Spark Ignition Engine Fuel System													
CO3	Explain	the work	ing of va	rious Spa	rk Ignitic	n Engine	Fuel Sys	stem							
CO4	Explain	the const	ruction a	nd worki	ng of var	ious CI E	ngine Fu	el System	S						
CO5	Summa	rize the co	onstructio	onal diffe	rence bet	ween con	nbustion (chambers	of C. I. E	ngines.					
Mapping of C	Os with	POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12		
CO1									M						
CO2	S			S		M				S					
CO3		M		M											
CO4		M							L						
CO5							L		M						

Course Topics

INTRODUCTION

Historical Development of Automobiles classification of Automobiles - Type of Automobile Engines - Principle of engine operation, two and four stroke engine CNG/LPG engine - classification of engine - engine parts and their function cylinder head piston, piston rings, piston pin, connecting rod, crank shaft, flywheel, camshaft, valve and valve mechanism and crank case.

AIR CYCLES FOR AUTOMOTIVE USE

Air standard cycles-Otto, Diesel and Dual, Fuel air cycles, Actual cycle analysis, Effects of variable specific heats and dissociation on indicator diagram. Port and valve timing diagrams related numericals.

S.I ENGINE FUEL SYSTEM

Classification of I.C. Engines - carburation, factors affecting carburation, air fuel mixture requirements, working principle of simple carburator, drawbacks of a simple carburator, compensating devices in a carburator, introduction to basic electronics petrol injection system, its merit and demerits, introduction to multipoint fuel injection system, CNG/LPG systems

ENGINES FUEL SYSTEM

Introduction, requirements of diesel fuel injection system, classification of injection systems, injection pumps- Jerk type and distributor type, injection Nozzles – requirements, types of injection nozzles, injection lag, injection timing, Calibration of injection pumps, Common Rail Direct Injection System (CRDI)

COMBUSTION AND COMBUSTION CHAMBERS OF S.I ENGINE

Combustion in S.I engine, stages of combustion, Flame propagation, rate of pressure rise, abnormal combustion, detonation effect of engine variables on detonation & flame propagation, pre ignition. Desirable characteristics of gasoline, rating of gasoline – HUCR, Octane number, performance number, combustion chambers, types & factors controlling combustion chamber design

Text Books

- 1. Internal Combustion Engine by Ganesan V., Tata McGraw Hill Publishing
- 2. A Course in Internal Combustion Engine by M.L. Mathur & R.P. Sharma, Dhampat Rai & Sons 2002
- 3. Internal combustion Engines by K.K.Ramalingam, Scitech puli, Chennai 2000

References

1. The I.C. Engine by Taylor, C.F. & Taylor, E.S Mitpress

- 2. Automotive Engine by Crouse/Anglin, McGraw Hill International Edition
- 3. Elements of I.C. Engine by Rogowski, A.R. McGraw Hill
- 4. Combustion Engine Processes by Litchiy, L.C. McGraw Hill
- 5. Internal Combusion Engine Fundamentals by John B.Heywood, M Graw Hill 1988.
- 6. Engineering Fundamentals of Internal Combustion Engines-PH1 2003

AUT208		ות	FCTD	ONICS	AND IN	CTDIIA	TENIT A T	rion .		L	T :	P	C	
AU 1 208		L	LECTR	UNICS.	AND IN	SIKUW	IENIA	HON		3	0	0	3	
Prerequisite	Basic k	nowledg	ge in elec	ctrical an	d electro	onics								
Objective(s)					ons in au oprocess		e vehicle	by using	g digital a	nd anal	log circu	its,		
Course Outco	me(s)													
CO1	Able to	acquire	knowled	dge in el	ectronic	compone	ents and	devices.						
CO2	Ability	to devel	op digita	al and an	alog circ	cuits.								
CO3	To den	o demonstrate decoders / drivers, timer, display devices, A/D and D/A converters.												
CO4	Capabl	Capable to analyze electronic measurement and instruments.												
CO5	To app	ly progra	ım inter	facing in	microp	rocessor-	- 8255, 8	251.						
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12	
CO1	M													
CO2		L			M									
CO3				M					L		M			
CO4			L		M				Н					
CO5	L								M		Н			
					Course	e Topics								

ELECTRONICS COMPONENTS AND DEVICES

Resistors, capacitors, inductors and transformers – properties, types, simple PN junction diodes, Zener diode, Bipolar junction transistor and field effect transistors – operating principles and characteristics. Other devices – UJT, SCR, LED, photo detectors

ANALOG CIRCUITS

Rectifier and power supply circuits, clipper, clamper using diodes, operational amplifiers – properties and typical circuits like differentiator, integrator, summer, comparator, single – stage BJT's and FET's amplifiers – multistage amplifier principles (quantitative treatment only)

DIGITAL CIRCUITS

Basics of Boolean logic – logic gates, flip flops, shift register, counters, decoders / drivers, timer, display devices, A/D and D/A converters

MEASUREMENTS AND INSTRUMENTS

Definitions of accuracy, precision, sensitivity, resolution, linearity, range, measurement of electrical quantities – voltmeter, ammeter, wattmeter, DMM, CRO, DSO, transducers and signal conditioning systems for pressure, temperature, acceleration measurements (quantitative treatment only)

MICROPROCESSORS AND APPLICATIONS

Architecture of 8085 processors, address modes, instruction set, simple programming like addition, subtraction, multiplication, logical operation, peripheral and interfacing – 8255, 8251. Applications like motor control, keyboard and PC interface, introduction to micro controllers

Text Books

- 1. Millman. J and Halkias. C., "Integrated Electronics", Tata Mcgraw Hill, 2004
- 2. Paul Horowitz and Wilfred Hill "The Art of Electronics", Cambridge University Press, 1989

- 1. Donald P leach, Albert Paul Malvino and Goutam saha, "Digital Principles and Applications", 6E, Tata Mcgraw Hill, 2006
- 2. A. K. Sawhney, "Acourse in electrical dn electronic Measurement and Instrumentation", Dhanpat rai and sons, New delhi, 1999

AUT282		ATITO	моти	VE EUE	I C A NIT) LUBR	ICATIC	NIC I AI	D	L	T	PC	7)	
AU1202		AUIC	DIVIOTI	VETUE	LS ANL	LUDK	ICATIC	INS LAI	D	0	0 3	3 2		
	To und	erstand t	he fuel q	uality an	d constit	tuents.								
Prerequisite		k with th												
	To exai	mine the	flash and	d fire poi	nt of fue	els.								
Objective(s)	To den	nonstrate	working	g of auto	motive f	ules and	lubricati	on						
Course Outco	me(s)													
CO1	Test the	ne performance of various engines using dynamometers.												
CO2	Asses t	he perfo	rmance o	character	istics of	automot	ive engii	nes						
CO3	Measur	e the pro	perties o	of fuels a	ınd lubri	cants.								
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	Н	Н	Н		M			_	Н				
CO2	Н	Н	Н	Н		M			_	Н				
CO3	Н	Н	Н	Н		Н	M							

- Course Topics
- 1) Temperature dependence of viscosity of lubrication oil by Redwood Viscometer
- 2) Viscosity Index of lubricating oil by Saybolt Viscometer.
- 3) Flash and Fire points of Diesel, K-Oil, and Bio Diesel.
- 4) Flash and Fire points of lubricants.
- 5) Drop point of grease and mechanical penetration in grease.
- 6) Calorific value of liquid fuel
- 7) Calorific value of gaseous fuel
- 8) Study of semi solid lubrication in various Automobile Unit & Joints
- 9) Study of lubrication in transmission, final drive, steering gearbox.
- 10) Study of analytical equipment for oil analysis.
- 11) To find out volatility characteristic of different fuels by ASTM distillation methods (diesel, gasoline lubricants).

A 11/204			ENG	NIE DE	OTING I	I A DAD	ATODA	7		L	T 1	P C		
AUT284			ENG	INE LE	STING 1	LABUK	AIUKI	-		0	0 3	3 2		
Prerequisite		otive Eng odynami	_	hermal E	Engineeri	ing								
Objective(s)	To con	duct perf	ormance	e test on	the IC er	ngines ar	nd air co	mpresso	rs.					
Course Outco	me(s)													
CO1		Apply the knowledge for finding performance characteristics of thermal equipment's												
CO2	Test the	est the performance of various engines using dynamometers.												
CO3	Asses t	he perfo	rmance o	haracter	ristics of	automot	ive engii	nes						
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н	Н	Н		Н	M							
CO2	Н	Н	Н	Н		M				Н				
CO3					Н	Н	Н	Н		Н	M			
					Course	e Topics								

- 1) Port timing diagram (Petrol and Diesel)
- 2) Valve timing diagram (Petrol and Diesel)
- 3) Performance test of four stroke diesel engine
- 4) Heat balance test on four stroke diesel engine
- 5) Performance test of four stroke Petrol engine
- 6) Heat balance test on four stroke Petrol engine
- 7) Retardation test to find frictional power of diesel engine
- 8) Performance test on air compressors

AUT285	T/I	ECTRO	NICC A	NID INC	TDIM:	ENITAT	ION I A	DOD A	TODV	L	T	P C			
AU 1205	EL	ECIKU	NICS A	IND INS	HUM	LNIAI	ION LA	IDUKA .	IOKI	0	0	3 2			
Prerequisite	Autom	otive ele	ctrical ar	nd electr	onics										
Objective(s)	To stu	dy the v	vorking	princip	le of the	e variou	s electri	ical and	electro	nic subs	ystem o	f an			
Objective(s)	automo	bile.													
Course Outco	me(s)														
CO1	Recogn	ecognize and understand the different wiring diagrams used in automobile manuals.													
CO2	To rec	recognize basic electrical and electronic circuits used in automobile systems and also derstand the basic programming with the 8085 microprocessor													
COZ	underst	and the	basic pro	ogramm	ing with	the 8085	microp	rocessor							
CO3	To den	nonstrate	UJT, F	ET,SCR	, DIAC a	and TRIA	AC.								
Mapping of C	Os with	POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Н									M					
CO2		M		Н	Н										
CO3				M							M				
					Course	e Topics									

- 1) Characteristics of semiconductor diode and zener diode
- 2) Characteristics of transistor under common emitter configuration
- 3) Characteristics of transistor under common base configuration
- 4) Characteristics of transistor under common collector configuration
- 5) Characteristics of UJT and FET
- 6) Characteristics of SCR, DIAC and TRIAC
- 7) Characteristics of RTD
- 8) Characteristics of Thermistor
- 9) Characteristics of thermocouple
- 10) Characteristics of strain gauge load cell

SEMESTER-V

AUT301		<u> </u>	AUTOM	OTIVE	ELECT	TRICAL	SVSTE	EMS		L	T	P	C
710 1001								21110		3	0	0	3
	Bas	sic know	ledge in	electrica	ıl and ele	ectronics							
Prerequisite	Pra	ctical kn	owledge	in electi	rical circ	uits and	electrica	ıl termin	ology rela	ited to a	automo	biles	S
Objective(s)	kno Exa	wledge.	the work	ing of d	ifferent e	electrical	compon	ents in t	n automo		d to get	prac	ctical
Course Outco	me(s)												
CO1	Unders	tand the	concept	of batter	ry operat	ion and i	its neces	sity					
CO2	Examir	ning the	working	of startii	ng syster	n.							
CO3	Applica	ation of l	oatteries	in the au	ıtomobil	e and the	eir charg	ing syste	m.				
CO4	Analyz	ing the i	gnition s	ystem aı	nd spark	plugs co	nstruction	on.					
CO5	Unders	tanding	the funct	ion of li	ghting sy	stem an	d access	ories.					
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	F	PO12
CO1	S		S									I	٠
CO2		M			L		S		M				
CO3	S							L					
CO4			S			L			M				
CO5				L					_			N	$\sqrt{\Lambda}$

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, Capacity and efficiency of batteries. Various tests on battery condition charging methods, details of modern storage batteries

STARTING SYSTEM

Condition at Starting Behaviour of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units, care & maintenance of starter motor. Starter switches

Course Topics

CHARGING SYSTEM

Function, components of DC and AC charging system for automobile, construction, operating principle, characteristics, charging circuit controls – cutout, relays, voltage and current regulators, trouble shooting

IGNITION SYSTEM

Types, construction & working of battery coil and magneto ignition systems - centrifugal and vacuum advance mechanisms - Types and construction of spark plugs, Electronic Ignition system, digital ignition system

LIGHTING SYSTEM AND ACCESSORIES

Insulated & earth return systems. Positive & negative earth systems. Details of head light & side light. Head light dazzling & preventive methods. Electrical fuel-pump, Speedometer, Fuel, oil & temperature gauges, Horn, Wiper system, Trafficator.

Ι.

AUT302			Α.	нтом	OTIVE 1	FNCINI	ec II			\mathbf{L}	T]	P	C	
AU1302			A	UTOM	JIIVE	LINGINI	P9-11			3	1	0	4	
Prerequisite	Basic k	nowledg	ge about	IC engin	ies									
Objective(s)	To lear	n about S	Spark Ig	nition an	d Comp	ressed Ig	nition an	nd other	types of	engines				
Course Outco	me(s)													
CO1	Describ	e the ba	sics of a	utomobi	le compo	nents an	d its wo	rking						
CO2	Analyze	the air s	tandard c	ycle and	correlate	with actu	al engine	cycle.						
CO3	Explain	the working of various Spark Ignition Engine Fuel System												
CO4	Explain	the working of various Spark ignition Engine Fuel Systems the construction and working of various CI Engine Fuel Systems												
CO5	Summa	rize the co	onstructio	onal diffe	rence bet	ween con	nbustion	chambers	of C. I. E	Engines.				
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1									M					
CO2	S			S		M				S				
CO3		M		M										
CO4		M							L					
CO5							L		M					

COMBUSTION AND COMBUSTION CHAMBERS OF CI ENGINES

Importance of air motion, swirl, squish & turbulence, swirl ratio, stages of combustion in C.I engines, delay period, factors affecting delay period, knock in C.I engines combustion chambers, design requirements, types of combustion chambers, desirable characteristics of diesel fuel, rating of diesel fuel, cetane number, diesel index, aniline point.

Course Topics

TESTING & PERFORMANCE OF I.C. & C.I. ENGINES

Purpose of testing of I.C. & C.I. Engines, performance parameters & characteristics variable's affecting performance characteristics, measurement of F.H.P., I.H.P. & B.H.P. Fuel consumption, Air consumption, Heat carried by exhaust gases, Heat balance sheet, performance calculations, Numerical Problems

IGNITION, SUPER CHARGING & ENGINE BALANCING

Ignition systems, requirements, types battery, magneto ignition system, spark plug ignition timing and exhaust emissions, demerits of conventional ignition system Introduction to electronic ignition system, supercharging, Turbo charging, stratified charge, objectives, effects & limits of supercharging of S.I. & C. I Engine, engine balancing, general consideration, power balance & its importance, firing order and its significance, power overlap, power flow charts, dampeners

COOLING AND LUBRICATION SYSTEM

Need for cooling system, Types of cooling system: air cooling system, liquid cooling system, forced circulation system, pressure cooling system. Lubrication system; mist wet sump lubrication system, properties of lubricants

ENGINE FRICTION

Engine friction – introduction, total engine friction, effect of engine variables on friction, hydrodynamic lubrication, elasto hydrodynamic lubrication, boundary friction, hydrodynamic lubrication, elasto hydrodynamic lubrication, boundary design of a lubricating system

Text Books

- 1) Ganesan.V. "Internal Combustion Engines", Tata-McGraw Hill Publishing Co., New Delhi 1994.
- 2) Dr.K.K.Ramalingam "Internal Combustion Engines Theory and Practice", Scitech Publications(India) Pvt.Ltd, Chennai-17, 2001.

- 1) Heldt.P.M. "High Speed Combustion", Oxford IBH Publishing Co., Calcutta, 1985.
- 2) Obert.E.F. "Internal Combustion Engine analysis and Practice", International Text Book Co., Scranton, Pennsylvania, 1988.
- 3) Maleev.V.M. "Diesel Engine Operation and Maintenance", McGraw Hill, 1974.
- 4) Dicksee.C.B. "Diesel Enignes", Blackie & Son Ltd., London, 1964.

AUT303			AUTO	моти	E TRA	NCMIC	CION			L	T	P	C	
AU 1303			AUTO	WIOTIV	E IKA	NOMIO	51UN			3	0	0	3	
Prerequisite	Basic kı	nowledg	e in auto	omotive	chassis,	gears a	nd gear	trains.						
	To deve	-			_									
Objective(s)	develop pre-requ													
Course Outco	ome(s)													
CO1	Underst	and the	concept	of clutc	hes and	gear box	xes							
CO2	Know a	now about the fluid coupling and torque converters, performance characteristics												
CO3	Study al	udy about Automatic transmission												
CO4	Learn al	bout the	differen	t drive s	systems.									
CO5	Know th	ne applic	cations o	f Auton	natic Tra	nsmissi	on							
Mapping of C	COs with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1]	PO12	
CO1			L										L	
CO2	L	Н		M					M					
CO3			L	M									M	
CO4	M	L		Н										
CO5			L				Н							
	•				Course	e Topics	S	•	•			•		

CLUTCH AND GEAR BOX

Requirement of transmission system - Different types of clutch, principle, construction, torque capacity and design aspects. Determination of gear ratios for vehicles - Performance characteristics in different speeds - Different types of gear boxes - conventional gear boxes.

HYDRODYNAMIC DRIVE

Fluid coupling - Principle of operation, constructional details, torque capacity, performance characteristics and reduction of drag torque. Torque converter - Principle of operation, constructional details, performance characteristics, converter coupling, multistage torque converters and polyphase torque converters.

AUTOMATIC TRANSMISSION

Ford - T-model gear box, Wilson Gear box, Cotal electromagnetic transmission, Automatic over drive, Hydraulic control system for automatic transmission.

HYDROSTATIC DRIVE AND ELECTRIC DRIVE

Hydrostatic drive - Various types of hydrostatic systems - principles of hydrostatic drive system, advantage and limitations, comparison of hydrostatic drive with hydrodynamic drive - construction and working of typical Janny hydrostatic drive. Electric drive - principle of early and modified Ward Leonard control system, advantage & limitations and performance characteristics.

AUTOMATIC TRANSMISSION APPLICATIONS

Chevrolet "Turbo glide" Transmission - Power glide Transmission - Toyota "ECT-i" Automatic Transmission with Intelligent Electronic control system - Clutch Hydraulic Actuation system.

TEXT BOOK

1. Newton and Steeds, "Motor vehicles", Illiffe Publishers, 1985.

REFERENCES BOOK

- 1. Heldt.P.M., "Torque converters", Chilton Book Co., 1992.
- 2. Judge.A.W., "Modern Transmission systems", Chapman and Hall Ltd., 1990.
- 3. SAE Transactions 900550 & 930910.
- 4. Hydrostatic transmissions for vehicle applications ", I Mech E Conference, 1981-88.
- 5. Crouse. W.H., Anglin., D.L., " Automotive Transmission and Power Trains construction ", McGraw-Hill, 1976.

AUT314			AUTON	MOTIVI	E COMI	PONEN'	T DESI	GN		L		P C		
										3	1) 4		
Prerequisite		h of Mat												
Trerequisite	Mechai	nics of M	lachines											
Objective(s)	To mak	te the stu	dents ur	nderstand	the des	ign conc	ept and p	orinciple	s of vario	ous engi	ne comp	onents.		
Course Outco	me(s)							_		_				
CO1	Unders	tand the	design a	ssumptio	ons.									
CO2	Unders	erstand and Apply Engineering Design process												
CO3	Apply 6	oly engineering principles and analytical techniques in designing shafts and springs.												
CO4	Design	of vario	us auton	notive en	gine cor	nponents	s like cyl	inder pi	ston, con	necting	rod, flyv	vheel		
CO4	and val	ves.												
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	M	L											
CO2	M			M								_		
CO3	M	M	Н		M									
CO4							Н							

INTRODUCTION

Engineering materials and their physical properties appolied to design, selection of materials, factor of safety, endurance limit, notch sensitivity, principles of design optimization, future trends, computer aided drafting

Course Topics

LIMITS, FITS, TOLERANCES, SURFACE FINISH, SHAFTS AND SPRINGS

Definitions, types of tolerances and fits, design considerations, Engineering materials and their physical properties applied to design, selection of materials, factor of safety, endurance limit, notch sensitivity, principles of design optimization, future trends, computer aided drafting for interference fits, surface finish, surface roughness, design of power transmission shafts, design of helical springs

DESIGN OF CYLINDER AND PISTON

Choice of material for cylinder and piston, piston friction, piston slap, design of cylinder, piston, piston pin, piston rings, piston failures, lubrication of piston assembly

DESIGN OF CONNECTING ROD AND CRANKSHAFT

Material for connecting rod, determining minimum length of connecting rod, small end and big end design, shank design, design of big end cap bolts, connecting rod failures, balancing of IC engines, significance of fire order, material for crank shaft, design of crankshaft under bending and twisting, balancing weight calculations

DESIGN OF VALVES AND FLYWHEEL

Design aspects of intake and exhaust manifolds, inlet and exhaust valves, valve springs, tappets, valve train. Materials and design of flywheel

TEXTBOOKS

- 1. R. K. Jain, "Machine Design", Khanna Publishers, New Delhi, 1997
- 2. Design data book, PSG college of Technology, Coimbatore, 2000
- 3. P. M. Heldt, "High Speed Combustion Engines", Oxford-IBH Publishing Co., Calcutta, 1965

AUT387			VEIII	CI E TE	CTINC	LADOI	RATOR	V		L	T 1	P C		
AU1367			V E HI	CLE IE	BIING	LADUI	KAIUK	ĭ		0	0 3	3 2		
Prerequisite		nowledg												
Objective(s)	To exec	cute the v	arious te	esting an	d recond	itioning o	of vehicle	e parts.						
Course Outco	me(s)													
CO1	Unders	derstand the concept of vehicle and engine performance evaluation												
CO2	Unders	Understand about the Laboratory and On road testing of vehicles												
CO3	Unders	Understand the various mechanical measurement devices used in vehicle testing												
Mapping of C	Mapping of COs with POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M			M										
CO2			L		Н				M					
CO3				M							Н			
	•				Course	e Topics	•		•		•			

- 1) Study of IC engine testing dynamometers
- 2) Study of 2 wheeler chassis dynamometer
- 3) Study of 4 wheeler chassis dynamometer
- 4) Study of pressure pickup, charge amplifier, storage oscilloscope and signal analyzers used for IC engine pressure testing
- 5) Testing of 2 wheeler with chassis dynamometer
- 6) Testing of 4 wheeler with chassis dynamometer
- 7) Measurement of HC, CO, CO2, O2 using exhaust gas analyzer in 2 wheeler and 4 wheeler
- 8) Diesel smoke measurement in 2 wheeler and 4 wheeler

AUT388		LITOM	OTIVE	COMP	ONENT	DESIC	NI ADA	AD A TO	DV	L	T	P	C		
AU 1300	F	AU I OM	OTIVE	COMIF	ONENI	DESIG	IN LAD	JKATU	K I	0	0	3	2		
Prerequisite	Nil														
Objective(s)	To fami design														
Course Outco															
CO1	Design	Design and assemble the Chassis components using Modelling													
CO2	Design	Design and assemble the Engine components using Modelling													
Mapping of C	Os with	POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	I	PO12		
CO1		L		Н				M							
CO2			M							Н					
					Course	Topics									

- 1) Design and drawing of piston
- 2) Design and drawing of piston pin and piston rings
- 3) Design of crank shaft
- 4) Design of connecting rod, small end and big end, shank design, design of big end cap, bolts and drawing of connecting rod assembly
- 5) Design of crankshaft, balancing weight calculations
- 6) Design and drawing of flywheel
- 7) Design and drawing of the inlet and exhaust valves
- 8) Design of cam and camshaft, cam profile generation, drawing of cam and cam shaft
- 9) Design of cylinder

SEMESTER VI

AUT304		AUTC	MOTIV	VE MAT	FERIAL	SAND	METAI	LURG	V	L	T	P	C	
710 100 1										3	0	0	3	
Prerequisite	Basics Propert	_	ics and	Chemis	try – B	asic kno	wledge	in Mec	hanical, l	Magnet	ic and	The	rmal	
										4				
Objective(s)	_	etallic m	_			-			ng and apprials for A					
Course Outco	me(s)													
CO1	Gain ba	Gain basic knowledge in various fundamentals of alloy design with emphasis on Fe-C system												
CO2	Acquir	Acquire knowledge in fracture and fracture mechanics of engineering materials												
CO3	Acquir	Acquire fundamental knowledge in the characterization of engineering materials												
CO4	Provide	e basic k	nowledg	e in the	selection	of mate	rials for	automob	oile comp	onents				
CO5	surface	e treatme	•	e import	ance of l	neat trea	tment ar	ıd phase	transform	nations	with st	tudie	es on	
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1	S		S		M				L					
CO2		M		S	L		S			S				
CO3	S	M		L	S				S	M				
CO4	M			M	L		M				S			
CO5	S		M	M					S					
					Course	e Topics								

ELASTIC AND PLASTIC BEHAVIOUR OF MATERIALS

Elasticity-forms - Stress and strain relationship in engineering materials - Deformation mechanism - Strengthening material - Strain hardening, alloying, polyphase mixture, martensitic precipitation, dispersion, fibre and texture strengthening - iron carbon diagram.

FRACTURE, FATIGUE AND CREEP

Fracture, classification and types, Griffith's theory - Notch effects, stress concentration - Concept of fracture toughness - Ductile brittle transition - Fatigue-mechanism of crack initation and growth, factors affecting fatigue creep - Creep curve, Ashby deformation mechanism maps, creep mechanism, metallurgical variables of creep.

CHARACTERISTICS OF MATERIALS

Castability, machinability, formability and weldability of engineering materials such as steel, cast iron, alloy steels, brass, bronze and Al alloys. Composite materials fabrication techniques, materials for high temperature. Cryogenic wear, corrosion, fatigue, creep and oxidation resistance application.

SELECTION OF MATERIALS

Criteria of selecting materials for automotive components viz cylinder block, Cylinder head, piston, piston ring, Gudgeon pin, connecting rod, crank shaft, crank case, cam, cam shaft, engine valve, gear wheel, clutch plate, axle, bearings, chassis, spring, body panel - radiator, brake lining etc. Application of non-metallic materials such as composite, ceramic and polymers in automobile.

HEAT TREATMENT AND SURFACE TREATMENT

Heat treatment of steel - Annealing - Types, normalising, Types, hardening and tempering with specific relevance to automotive components, Induction, flame and chemical hardening, coating of wear and corrosion resistance, Electroplating. Phosphating, Anodizing, hot dipping, thermal spraying, hard facing & thin film coatings.

Text book

1. Khanna.O.P., "Material Science and Metallurgy", Dhanapal Rai & Sons, 1992

- 1) Kapoor, "Material Science and Processes", New India Publishing House, 1987.
- 2) Dieter.G.E., Mechanical Metallurgy, McGraw Hill, New York, 1972.
- 3) Avner.S.H., Introduction to physical metallurgy, MaGraw Hill, New York., 1982.
- 4) Raghavan.V., Physical Metallurgy, Principle and Practice, Prentice Hall, 1995.
- 5) Bawa.H.S., Materials Metallurgy, McGraw-Hill, 1996.
- 6) Avner S.H". Introduction to Physical Metallurgy" McGraw-Hill, New York, 1982.
- 7) Dieter, G.E., Mechanical Metallurgy, McGraw-Hill, New York, 1996.

AUT306			ATIT	ОМОТ	IVE AE	DODVN	IAMICS	,		L	T	P	C	
AU1300			AUI	OMOT	IVE AE.	KUDIN	AMICS	•		3	1	0	4	
Prerequisite		nowledg ructures		ineering	drawing	g, Engine	ering M	echanics	, Fluid Me	echanic	es and v	ehic	ele	
Objective(s)	_	art knownets and	-	n the stru	icture, pi	roperties	, treatme	ent, testin	ng and app	olicatio	ns auto	mob	oile	
Course Outco	me(s)													
CO1	Sumr	narize th	e flow re	elated pa	arameters	s and pro	blems a	round a v	vehicle					
CO2	Interp	nterpret the aerodynamic drag around a car												
CO3	_	Explain the ways available to optimize the shape to get an aesthetic and stylish look to a car considering the modifications to be done.												
CO4		Analyze the various aerodynamic forces around a vehicle to reduce the drag in commercial vehicles.												
CO5		ate the p		elocity a	and other	forces ar	ound a ve	ehicle usi	ng its scal	e mode	l with t	he h	elp of	
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	I	PO12	
CO1						L			L					
CO2		M		L										
CO3		S			M				L					
CO4		S							L					
CO5	M								L					
					Course	e Tonics								

INTRODUCTION

Scope - historical development trends - Fundamental of fluid mechanics - Flow phenomenon related to vehicles - External & Internal flow problem - Resistance to vehicle motion - Performance - Fuel consumption and performance - Potential of vehicle aerodynamics.

AERODYNAMIC DRAG OF CARS

Cars as a bluff body - Flow field around car - drag force - types of drag force - analysis of aerodynamic drag - drag coefficient of cars - startegies for aerodynamic development - low drag profiles.

SHAPE OPTIMIZATION OF CARS

Front end modification - front and rear wind shield angle - Boat tailing - Hatch back, fast back and square back - Dust flow patterns at the rear - Effects of gap configuration - effect of fasteners.

VEHICLE HANDLING

The origin of forces and moments on a vechile - side wind problems - methods to calculate forces and moments - vehicle dynamics Under side winds - the effects of forces and moments - Characteristics of forces and moments - Dirt accumulation on the vehicle - wind noise - drag reduction in commercial vehicles.

WIND TUNNELS FOR AUTOMOTIVE AERODYNAMIC

Introduction - Principle of wind tunnel technology - Limitation of simulation - Stress with scale models - full scale wind tunnels - measurement techniques - Equipment and transducers - road testing methods - Numerical methods.

Text Book

1) Hucho.W.H., "Aerodynamic of Road vehicles", Butterworths Co. Ltd., 1997.

References

- 1) Pope. A., "Wind Tunnel Testing", John Wiley & Sons, 2nd Edn, New York, 1974.
- 2) Automotive Aerodynamic: Update SP-706, SAE, 1987.
- 3) 3. Vehicle Aerodynamic, SP-1145, SAE, 1996.

										-	TEC.	D C		
AUT307		AU	TOMO'	TIVE P	OLLUT	ION AN	D CON	TROL		1 L 3	-	P C 3		
Prerequisite					tive Eng		Automob Control.	oile Engi	neering		<u> </u>	<u> </u>		
Objective(s)	control	ling and	maintaiı	ning env		t from po	ollution.		ces the te elps to ur					
Course Outcome(s)														
CO1	Un	Understand the sources and effects of pollutant.												
CO2	Apj	Apply the chemistry of SI engine fuels after combustion.												
CO3	Des	Describe chemistry of CI engine fuels after combustion.												
CO4	Cho	Choose the control techniques to reduce the formation of pollutants in SI and CI engine.												
CO5	Tes	t Proced	ures, De	vices an	d Standa	rds used	to follow	w polluti	on contro	ol.				
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L			Н	L						M			
CO2	Н	Н		L	M									
CO3		M			Н				L	M	L			
CO4		Н		L	M					L				
CO5	Н			M					L	L	L			
					Course	e Topics								

INTRODUCTION

Pollutants - sources - formation - effects - transient operational effects on pollution.

SI ENGINE COMBUSTION AND POLLUTANT FORMATION

Chemistry of SI engine combustion - HC and CO formation in 4-stoke and 2-stroke SI engines - NO formation in SI engines - Particulate emissions form SI engines - Effects of operating variables on emission formation.

CI ENGINE COMBUSTION AND EMISSIONS

Basics of diesel combustion - Smoke emission in diesel engines - NO emission from diesel engines - Particulate emission in diesel engines. Color and Aldehyde emissions from Diesel engines - Effects of operating variables on emission formation.

CONTROL TECHNIQUES FOR SI AND CI ENGINE EMISSION REDUCTION

Design changes - Optimization of operating factors - Exhaust gas recirculation - Fumigation - Air injection PCV

system - Exhaust treatment in SI engines - Thermal reactors - Catalytic converters - Catalysts - Use of unleaded petrol.

TEST PROCEDURE & INSTRUMENTATION FOR EMISSION MEASUREMENT AND EMISSION STANDARDS

Test procedures - NDIR analyser - Flame ionization detectors - Chemiliuminescent analyser - Gas chromatograph - Smoke meters - Emission - standards.

Text Book

1. Springer and Patterson, Engine Emission, Plenum Press, 1990.

References

- 1. Ganesan.V., "Internal Combustion Engines", Tata McGraw Hill Co., 1994.
- 2. SAE Transactions, "Vechicle emission", 1982 (3 volums).
- 3. Obert.E.F., "Internal Combustion Engines", 1982.
- 4. Taylor.C.F., "Internal Combustion Engines", MIT Press, 1972.
- 5. Heywood.J.B., "Internal Combustion Engine Fundamentals", McGraw Hill Book Co., 1995.
- 6. Automoblies and Pollution SAE Transaction, 1995.

AUT310			VEU	пстет	PODV F	NGINE	FDINC			L	T	P C		
A01310			V E11	IICLE I	ODI E	INGINE.	EKING			3	1	0 4		
Prerequisite	Nil													
Objective(s)	aerodyı	namic, c	oncept, p	oanelling	g of pass	enger ca	r body t	rim. At 1	in the co the end or y of the v	f the co	urse the			
Course Outco	Course Outcome(s)													
CO1	Understand various category of vehicle frames													
CO2	Explair	Explain the various aerodynamic effects of vehicle body under different loading conditions												
CO3	Unders	Understand various types of bus body frames and their construction												
CO4		Understand the Vehicle ergonomics to provide at most comfortable position for driver and passenger												
CO5	Describ	Describe the various materials and methods used in body constructions and finishing												
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	M	M	L	L				M	L		M		
CO2	Н	Н		M					M	L	M	M		
CO3	Н		Н	M			L	M		M		M		
CO4	Н						L			M		M		
CO5	M								L		L			
					Course	e Topics			·	·		·		

CAR BODY

Types: Saloon, convertibles, Limousine, Estate Van, racing and sports car – driver's seat, body mechanisms – window winding, door lock, seat adjustment. driver's visibility, tests for visibility - Methods of improving visibility and space in cars - Safety: safety design. Safety equpiments for cars. Car body construction.

VEHICLE AERODYNAMICS

Objectives - Vehicle drag and types -various types of forces and moments - Effects of forces and moments - Side wind effects - Various body optimization techniques for minimum drag – Wind tunnel testing: Flow visualization techniques, Scale model testing, Component balance to measure forces and moments.

BUS BODY Types: Mini bus, single decker, double decker, two level, split level and articulated bus - Bus body lay out – Floor height - Engine location - Entracne and exit location - Seating dimensions - Constructional details:

Frame construction, Double skin construction - Types of metal section used - Regulations - Conventional and integral type construction.

COMMERCIAL VEHICLE

Types: flat platfor, dropside, fixed side, tipper body, tanker body. LCV body types: pickup van. Dimensions of driver seat in relation to controls and steering angle – driver cab design.

BODY MATERIALS, TRIM AND MECHANISMS

Aluminium alloy sheet, extrusion and casting, stainless steels, alloy steels, metal matrix composites. Strictural timbers – properties. Designing in GRP and high strength composites, thermoplastics, load bearing plastics, semi-rigid PUR foams and sandwich panel construction. Corrosion, anti-corrosion methods. Selection of paint and painting process – body trims items.

Text Book:

1) Powloski.J., "Vehicle Body Engineering", Business Books Ltd., 1989

- 1) Giles.J.C. "Body construction and design", lliffe Books Butterworth & Co., 1971.
- 2) John Fenton, "Vehicle Body layout and analysis", Mechanical Engg Publication Ltd., London, 1982.
- 3) Braithwaite. J.B., "Vehicle Body building and drawing", Heinemann Educational Books Ltd., London, 1977.

AUT389	,	МЕЛС ІІ	DEMEN	JTC AN	D MET	סו מכ	Y LAB	AD A TA	DV	L	T	P	C		
AU1309	1	VILASU	KENIE	IIS AII	DIVIETI	KOLOG	I LAD	JKATU	K I	0	0	3	2		
Prerequisite	Basic	knowled	lge in Mo	echanica	l Engine	ering.									
Objective(s)	and C	NC mac	hines wit	th their p	ros and	cons.			special m			ned.			
To develop knowledge on quality and importance of measuring systems will be explained. Course Outcome(s)															
CO1		Understand the constructional features and working principle of machine tool with its limitation.													
CO2		Analyze the utilization and limitation of computer numerical control machines for engineers.													
CO3	Know	n about 1	the impo	rtance of	f robot aı	nd its lin	nitations	in engin	eering fie	eld.					
Mapping of C	Os with	POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12		
CO1	M	M	Н		M								Н		
CO2	L	Н											M		
CO3	M		L							M			L		
					Course	e Topics									

- 1) Use of precision measuring instruments like micrometer, vernier height and depth gauges, surface plate etc.,
- 2) Checking dimensions of a part using slip gauge
- 3) Use of sine bar for measuring angles and tapers
- 4) Calibration of plug and dial gauge, micrometer
- 5) Measurement of tooth thickness by gear tooth vernier
- 6) Testing squareness of a try square using slip gauges
- 7) Checking straightness of s surface plate using autocollimator
- 8) Measurement of thread parameters using floating carriage micrometer
- 9) Gear inspection using profile projector
- 10) Use of electronic and mechanical comparator
- 11) Measurement of taper angle using tool maker's microscope
- 12) Study and use of coordinate measuring machine

MEC383		DV	NAMIC	CAND	VIDD A7	CION I	ABORA	TODY		L	T	P	C
MECSOS		DYI	NAMIC	SAND	VIDKA	IION L	ADUKA	IOKI		0	0	3	2
Prerequisite	Basic l	knowled	ge in kin	ematics	of Mach	ines, for	ces actin	g on the	machines	s, basic	of vibra	ation	ıs.
Objective(s)		ly variou ments of		_		chines a	nd eleme	ents, bala	ancing of	machin	ing cor	npon	ients
Course Outco	me(s)	ne(s)											
CO1	Student	tudents will be able to know about the forces involved in the components and balancing those											
CO2		Students will be able to acquire knowledge in the field of dynamics characteristic of machining elements.											
CO3	Student	ts will at	le to kno	ow abou	t analysi	s of vibra	ations.						
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	Н	M	Н		Н					•			L
CO2		M L L											
CO3	Н				Н					•			L

- **Course Topics**
- 1) Moment of inertia on flywheel and connecting rod
- 2) Governor-Porter, Proell and Hartnell determination of speed and sensitivity
- 3) Whirling speed of shaft determination of critical speed
- 4) Transverse vibration determination of deflection
- 5) Undamped free vibration spring mass system
- 6) Forced vibration system single and multi degree of freedom
- 7) Vibration analyzer
- 8) Cam study jump phenomenon –determination of critical speeds
- 9) Vibrating Table determination of transmissibility ratio
- 10) Compound Pendulum determination of torsional and natural frequencies system with lumped moment of inertia.

SEMESTER VII

AUT401				VEHI	CLE DY	NAMIC	re			L	T	P	C
AU1401				V EIIIV	CLE DI	NAMIC				3	0	0	3
Prerequisite			_					_	ineering atrix theo	ory.			
Objective(s)	var stud	ious con	nponents various	s of a v s topics	ehicle. I	n detail in this c	the sus	pension e the sta	cept of m and tyre ability of	relate	d vibrat	ions	s are
Course Outco	me(s)												
CO1	Unde	Understand the basic of mechanical vibration under free, forced and damped conditions											
CO2	Estim	nate the r	nulti deg	gree of fr	eedom s	ystems f	or reduc	ing vibra	ation in ve	ehicles.			
CO3	Ident	Estimate the multi degree of freedom systems for reducing vibration in vehicles. Identify, check and test the suspension and tyre characteristics											
CO4	Appl	y the con	cept of v	vehicle h	andling	system.							
CO5	Expla	ain the co	oncepts o	of load d	istributio	n in veh	icles and	l stabilit	y of the v	ehicles.			
Mapping of C	Os with	POs	-										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	L			Н	L						M		
CO2	Н	Н		L	M								
CO3		M			Н				L	M	L		
CO4		Н		L	M					L			
CO5	Н			M					L	L	L		

INTRODUCTION

Fundamental of vibration, Mechanical vibrating systems. Modelling and Simulation - Model of an automobile - Single, two, multi degrees of freedom systems - Free, forced and damped vibrations. Mangnification factor - Transmissibility - Vibration absorber.

Course Topics

MULTI DEGREE OF FREEDOM SYSTEMS

Closed coupled system - Eigen valve problems - Far coupled Systems - Orthogonality of mode shapes - Modal analysis - Forced vibration by matrix inversion. Approximate methods for fundamental frequency - Dunkerley's lower bound - Rayleigh's upper bound - Hozler method for close coupled systems and branched systems.

SUSPENSION AND TYRES

Requirements. Sprung mass frequency. Wheel hop, wheel wobble, wheel shimmy. Choice of suspension spring rate. Calculation of effective spring rate. Vehicle suspension in fore and apt directions. Ride characteristics of tyre - Effect of driving and braking torque - Gough's tyre characteristics.

VEHICLE HANDLING

Oversteer, under steer, steady state cornering. Effect of braking, driving torques on steering. Effect of camber, transient effects in cornering. Directional stability of vehicles.

STABILITY OF VEHICLES

Load distribution. Calculation of Tractive effort and reactions for different drives - Stabiliy of a vehicle on a slope, on a curve and a banked road.

Text Books

1. Gillespie.T.D., "Fundamental of vehicle dynamic society of Automotive Engineers", Ic USA, 1992.

- 1. Heldt.P.M. " Automotive Chassis ", Chilton Co., New York, 1992.
- 2. Ellis.J.R., "Vehicle Dynamics", Business Books Ltd., London, 1991.
- 3. Giles.J.G. Steering, "Suspension and Tyres", Illiffe Books Ltd, London, 1998.
- 4. Giri.N.K., "Automobile Mechanics ", Khanna Publishers. New Delhi, 1986.
- 5. Rao.J.S. & Gupta.K., "Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd., New Delhi, 1999.

MEC481			STI	ми ла	ION I	ABORA'	TODV			L	T I	C		
MIEC401			511	VIULAI	ION LA	ADUKA	IOKI			0	0 3	2		
Prerequisite	Finite	Elemen	t Analys	is, Basis	of CAD	softwar	e							
Objective(s)	To de	velop sk	ill to use	CAD so	oftware t	o create	2D draw	ings.						
Course Outco	Course Outcome(s)													
CO1	Studer	tudents able to understand the system concept and apply functional modeling												
COI	method to model the components.													
CO2	Simul	imulate the operation of static, dynamic and thermal systems and make												
CO2	impro	vement a	ecording	g to the s	imulatio	n results	-							
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	
CO1	Н	M	Н		L						Н			
CO2		H H H L M M												
					Course	- Topics								

A. SIMULATION

- 1) Simulation of air conditioning system with condenser temperature and evaporator temperatures as input to get COP using C /MAT Laboratory.
- 2) Simulation of Hydraulic / Pneumatic cylinder using C / MAT Laboratory.
- 3) Simulation of cam and follower mechanism using C / MAT Laboratory.

B. ANALYSIS (SIMPLE TREATMENT ONLY)

- 1) Stress analysis of a plate with a circular hole.
- 2) Stress analysis of rectangular L bracket
- 3) Stress analysis of an axi-symmetric component
- 4) Stress analysis of beams (Cantilever, Simply supported, Fixed ends)
- 5) Mode frequency analysis of a 2D component
- 6) Mode frequency analysis of beams (Cantilever, Simply supported, Fixed ends)
- 7) Harmonic analysis of a 2D component
- 8) Thermal stress analysis of a 2D component
- 9) Conductive heat transfer analysis of a 2D component
- 10) Convective heat transfer analysis of a 2D component

DEPARTMENT ELECTIVE

AUT305			AU	ГОМОТ	TIVE EI	LECTRO	ONICS			L 3		P C 4		
Prerequisite											1 '	, 4		
Objective(s)	of vario		notive e	lectronic		_	-	-	ration an ignition s					
Course Outco	me(s)													
CO1	Disting	tinguish the various basic electrical and electronics systems of an automobile.												
CO2	Recogn	ecognize and understand the different wiring diagrams used in automobile manuals.												
CO3	Able to	Able to recognize the working of various electronics and accessories system.												
CO4	To anal	To analyze engine control system, ignition system and emission characteristics.												
CO5	To acqu	uire knov	wledge ii	n electro	magnetio	c interfer	ence sus	pension						
Mapping of C	Os with	POs	-					-						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	M	L	M					L					
CO2	L	Н		Н					M		M			
CO3	Н			M					M		L			
CO4	L	M	L	M					Н					
CO5		Н		M					Н		M			

Course Topics

FUNDAMENTAL OF AUTOMOTIVE ELECTRONICS

Current trends in mordern Automoblies, Open loop and closed loop systems - Components for electronic engine management. Electronic management of chassis system - Vehicle motion control.

SENSORS AND ACTUATORS

Introduction, basic sensor arrangement, types of sensors such as - oxygen sensors, Crank angle position sensors -Fuel metering / vehicle speed sensor and detonation sensor - Altitude sensor, flow sensor. Throttle position sensors, solenoids, stepper motors, relays.

ELECTRONIC FUEL INJECTION AND IGNITION SYSTEMS

Introduction, Feed back carburettor systems (FBC) Throttle body injection and muli port or point fuel injection, Fuel injection systems, injection system controls. Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation, Contactless electronic ignition system, Electronic spark timing control

DIGITAL ENGINE CONTROL SYSTEM

Open loop and closed loop control systems - Engine cranking and warm up control - Accleration enrichment -Deceleration leaning and idle speed control. Distributorless ignition - Integrated engine control system, Exhaust emission control engineering.

ELECTROMAGNETIC INTERFERENCE SUSPENSION

Electromangetic compatibility - Electronic dash board instruments - Onboard diagnosis system. security and warning system.

Text Books

- 1. William B.Riddens, "Understanding Automotive Electronics", 5th Edition, Butterworth, Heinemann Woburn, 1998.
- 2. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control System". Prentice Hall Inc., New Jersey.

- 1. Young. A.P. and Griffths.L. "Automobile Electrical Equipment", English Language Book Society and New Press.
- Crouse. W.H., "Automobile Electrical equipment", McGraw Hill Book Co Inc., New York, 1955.
 Robert N Brady, "Automotive Computers and Digital Instrumentation". A reston Book. Prentice Hall, Eagle Wood Cliffs, New Jersey, 1988.
- Bechtold., "Understanding Automotive Electronic", SAE, 1998.

AUT308		Δ1 .7	TERNA'	CE FUE	LSANI) ENER	GY SYS	TEMS		L	T I			
AC1300		ALI	LINIA	IE FOE	LIS AITI	ENER	GISIO	71 121713		3	0 (3		
Prerequisite	Basic k	nowledg	ge in IC l	Engines	and Fuel	s and Lu	bricants							
	To acqu	aire knov	vledge o	f alternat	te fuels									
Objective(s)							or handlii							
	To und	erstand v	arious e	nergy sy	stems fo	r use in 1	the autor	nobiles.						
Course Outco	me(s)													
CO1	To ider	ntify the	alternati	ves to co	nvention	nal gasol	ine and o	liesel fu	els					
CO2	Perforn	nance in	vestigati	on and c	omparis	on of alte	ernate fu	els						
CO3	To anal	nalyze the working of multi fuel engine.												
CO4		ecognize when and what information is needed, locate and obtain it from a range of sources												
CO4		aluate, us												
CO5	To app	ly nume	rical an	d spatia	l concep	ts and te	echnique	S.						
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L			M										
CO2	M	M												
CO3					M						M			
CO4			M								M			
CO5	Н								M					
					Course	e Topics								

INTRODUCTION

Estimation of petroleum reserve - Need for alternate fuel - Availability and properties of alternate fuels - general use of alcohols - LPG - Hydrogen - Ammonia, CNG, and LNG - Vegetable oils and Biogas - Merits and demerits of various alternate fuels.

ALCOHOLS

Properties as engine fuel, alcohols and gasolene blends, performance in SI engine. Methanol and gasoline blends - Combustion characteristics in engines - emission characteristics.

NATURAL GAS, LPG, HYDROGEN AND BIOGAS

Availability of CNG, properties, modification required to use in engines - performance and emission characteristics of CNG using LPG in SI & CI engines. Performance and emission for LPG - Hydrogen - Storage and handling, perforamance and safety aspects.

VEGETABLE OILS

Various vegetable oils for engines - Esterification - Performance in engines - erformance and emission characteristics

ELECTRIC AND SOLAR POWERED VEHICLES

Layout of an electric vehicle - Advantage and limitations - Specifications - System component. Electronic control system - High energy and power density batteries - Hybrid vehicle - Solar powered vehicles.

Text Book

1) Nagpal, "Power Plant Engineering", Khanna Publishers, 1991.

- 1) Maheswar Dayal, "Energy today & tomorrow", I & B Horishr India, 1982.
- 2) Nagpal, "Power Plant Engineering", Khanna Publishers, 1991.
- 3) "Alcohols and motor fuels progess in technology", Series No.19, SAE Publication USA 1980.

- 4) SAE Paper Nos. 840367, 841156, 841333, 841334.
- 5) "The properties and performance of modern alternate fuels" SAE Paper No.841210.
- 6) Bechtold. R.L., "Alternative Fuels Guide Book", SAE, 1997.

AUT309			COMPI	ISTION	I AND E	IFATT	DANCE	гD		L	T 1	P (С
AU1309			COMB	USTION	ANDE	IEAI I	KANSE.	LK		3	0 () 3	3
Prerequisite		nowledg											
Objective(s)									king in S	.I engir	ie.		
Objective(s)	To mak	ce studen	t to unde	erstand F	'-Q diagi	ram in S	I and CI	engines.					
Course Outco	me(s)												
CO1	To cate	gorize c	ombustic	on proces	ss and di	ffusion f	flames in	engines					
CO2	To diff	erentiate	normal-	abnorma	ıl combu	stion and	d flam pi	ropagatio	n.				
CO3													
CO4	CO4 To extrapolate convective heat transfer temperature distribution and thermal stresses in engines												
CO5		estigate c	ombusti	on proce	ess and P	-Q diagr	am in Sl	and CI	engines.				
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M			M									
CO2	Н						M						
CO3					Н					L			
CO4				Н					L				
CO5			M				L				Н		
					Course	Topics							

INTRODUCTION TO COMBUSTION PROCESSES

Combustion in premixed and diffusion flames - Combustion process in IC engines.

NORMAL, ABNORMAL COMBUSTION IN SI ENGINES

Stages of combustion - Flame propagation - Rate of pressure rise - Cycle to cycle variation - Abnormal combustion - Theories of detonation - Effect of engine operating variables on combustion.

COMBUSTION AND KNOCK IN CI ENGINES

Droplet and spray combustion theory - stages of combustion - delay period - peak pressure - Heat release – Gas temperature - Diesel knock.

HEAT TRANSFER IN IC ENGINES

Basic definitions - Convective heat transfer - Radiative heat transfer - Heat transfer, temperature distribution and thermal stresses in piston - Cylinder liner - Cylinder head - fins and values.

EXPERIMENTAL INVESTIGATION OF COMBUSTION AND HEAT

TRANSFER IN IC ENGINES

Photographic studies of combustion processes - P-Q diagram in SI and CI engines. Anemometry – Temperature measurement in piston - cylinder liner - cylinder head and engine valves.

Text Books

1) SPALDING.D.B., "Some fundamental of Combustion", Butterworth Science Publisheations, London, 1985.

- 1) Lewis.B., Pease.R.N. and Taylor.H.S., "Combustion Process High Speed Gas dynamics and Jet Propulsion Series", Princeton University Press, Princeton, New Jersey, 1976.
- 2) Taylor.E.F. "The Internal Combustion Engines", International Text Book Co., Pennsylvania, 1982.
- 3) Ganesan.V. "Internal Combustion Engines", Tata McGraw Hill Co., 1994.

AUT312	N /	IICROP	DOCE	CCOD A	DDI ICA	TIONI	INI ATIT	OMODI	LEC	L	T	P	C
AU 1312	IV.	HCKOP	RUCES	SOK A	PPLICA	MITON	IN AU I	OMOBI	LES	3	0	0	3
Prerequisite	Basic k	nowledg	ge in elec	ctronics.									
Objective(s)		ke studer ing devic		erstand t	he opera	tions of	micropro	cessor a	nd its lang	guage p	rogramn	ning	F >>
Course Outco	me(s)												
CO1	To reco	ognize di	fferent t	ypes of r	nicroproc	essor and	l its archi	tecture.					
CO2	To und	erstand t	he funct	ion of 80)85 MPU	J-T-STA	TE instr	uction se	et.				
CO3	To acqu	uire knov	wledge in	n microp	rocessor	· languag	ge progra	mming.					
CO4	To app	raise var	ious type	e of inter	rupt data	a transfe	r scheme	S.					
CO5	To drar	natize te	mperatur	e control,	stepper 1	notor cor	ntrol in au	tomotive	application	ns.			
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12
CO1	Н												
CO2	L	M											
CO3					L								
CO4										L			
CO5									M		Н		

Course Topics

ARCHITECTURE

General 8 bit microprocessor and its architecture 8085, Z-80 and MC 6800 MPU and its pin function - Architecture - Function of different sections.

INSTRUCTION SET

Instruction format - addressing modes - instruction set of 8085 MPU-T-STATE - Machine cycle and instruction cycles - Timing diagrams - Different machine cycles - Fetch and execute operations - estimation of execution times.

ASSEMBLY LANGUAGE PROGRAMMIMG

Construct of the language programming - Assembly format of 8085 - Assembly Directive - Multiple precision addition and subtraction - BCD to Binary and Binary to BCD, Multiplication, Division, Code conversion using look up tables - Stack and subroutines.

DATA TRNSFER SCHEMES

Interrupt structure - Programmed I/O - Interrupt driven I/O, DMA - Serial I/O.

INTERFACING DEVICES

Types of interfacing devices - Input / Output ports 8212, 8255, 8251, 8279. Octal latches and tristate buffers - A/D and D/A converters - Switches, LED's ROM and RAM interfacing.

APPLICATIONS

Data acquisitions - Temperature control - Stepper motor control - Automotive applications Engine control, Suspension system control, Driver information systems), Development of a high speed, high precision learning control system for the engine control.

Text Book

1) Ramesh, Goankar.S. "Microprocessor Architecture Programming and Applications", Wiley Eastern Ltd., New Delhi, 1986.

- 1) Aditya.P.Mathur, "Introduction to Microprocessors", III Edition, Tata McGraw-Hill Publishing Co Ltd., New Delhi, 1989
- 2) Ahson.S.I. "Microprocessors with Applications in Process Control", Tata McGraw-Hill, New Delhi, 1986.
- 3) SAE Transactions, 1986 Sec 3.
- 4) Jabez Dhinagar.S., "Microprocessor Application in Automoblies".
- 5) L.Bianco and A.Labella., "Automotive Micro Electronics", Elsevier science publishers. 1986.

AUT313		IN	ICTOII	MENTA	TION	AND ME	TDOL)CV		L	T	P	C	
AU 1313		11	NSIKUI	VIEN I A	ATION A	NIV WIE	IKOLO	JGY		3	0	0	3	
Prerequisite	Engine	ering Ph	ysics											
		2	the metr	ology ab	out line	measur	ing and a	angular n	neasuring	5				
Objective(s)	Instrun													
Objective(s)		w about							ration.					
		e exposu	re to var	ious pred	cision me	easuring	instrume	ents.						
Course Outco														
CO1	Measur	re the giv	en mech	nanical e	lements	and asse	mblies u	sing line	ar and an	gular aı	nalog /di	gita	ıl	
CO1		·												
CO2		ure and derive important dimensions of various thread forms and gears.												
CO3		ain surface roughness checking instruments and check the dimensions using the gauges												
CO4		the conce												
CO5	Select a	and meas	sure vari	ables usi	ng appro	priate se	ensors ar	ıd transd	ucers					
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1	Н				Н									
CO2		Н			M			M			M			
CO3			Н										Н	
CO4	L	L				Н				M				
CO5	Н				Н									
					Course	e Topics								

LINEAR AND ANGULAR MEASUREMENTS

Errors in measurement & calibration - Length standards - Length measuring instruments - Vernier, micrometers, dial gauges, comparators, Limits, fits, tolerances. Gauges and their types - Angular measuring instruments - bevel protractor, spirit level, sine bar - measurement of straightness and flatness - Measurement of surface finish.

MEASUREMENT OF SCREW THREAD AND GEAR

Various elements of thread - Two wire & three wire method - thread gauge - Various elements of gears - Various gear tooth measurement methods, composite error measurement.

PRESSURE & FLOW MEASUREMENT

Diaphragm - various elastic elements - Transduction methods - Potentiometric strain gauge, variable reluctance and capacitive device, LVDT type transducer, piezo electric transducers and its application to high speed engine. Farnboro Engine indicator. Low pressure measurement - McLeod gauge, pirani gauge, thermocouple type conductivity gauge.

Classification of flow meters - Orifice plate, venturimeter, flow nozzles, pitot tubes, rotameter, electromagnetic flow meters, anemometers, ultrasonic and magnetic flow meters, alcolck viscous flow meter.

TEMPERATURE MEASUREMENT

Temperature scales - Mechanical temperature sensors - liquid in glass, vapour pressure, bimetal - resistance type temperature sensors and their measuring circuits - Thermistors, thermocouples, laws, types, construction, circuits - Radiation methods - Optical pyrometer

LOAD AND TORQUE MEASUREMENT

Force measuring devices, balances, platform scale weigh bridges, load cells. Torque measurement, prony brake, rope brake. Dynamometers. Electric cradle dynamometer, Eddy current dynamometers. Hydraulic dynamometer, Transmission and chasis dynamometer.

Text Books

- 1) Jain.R.K., "Engineering Metrology "Khanna Publishers, New Delhi, 1994.
- 2) Rangan.C.S., Sarma.G.E. and Mani.V.S.V., "Instrumentation Devices and Systems" Tata McGraw Hill Publishing Co., New Delhi, 1990.

- 1) Patranabis.D, "Principles of Industrial Instrumentation", Tata McGraw Hill Publishing Co., New Delhi, 1996.
- 2) Beckwith, T.G. & Buck, N.L., "Mechanical Measurements", Oxford and IBH Publishing, New Delhi, 1990.

- 3) Jain.R.K., "Mechanical & Industrial Measurements", Khanna Publishers, New Delhi, 1990.
- 4) Gaylor.F.W. and Shotbolt.C.R., "Metrology for Engineers", ELBS Edition, 1990.
- 5) Khare and Vajpayee, "Dimensional Metrology", Oxford IBH Publishing Co, New Delhi, 1990.

AUT315			MODI	ERN VE	HICLE	TECHN	OLOG	Y		L 3		P C 3	
Prerequisite	Nil												
Objective(s)	To im	part kno	owledg	e about	the late	est deve	elopmei	nts in V	ehicle T	echno	logy		
Course Outco	me(s)						-						
CO1	Under	stand th	ne recei	nt trend	s in pov	ver plai	nts.						
CO2	Explai autom		t recent	develo	pment	in vehic	cle susp	ension	, Brakes	, and S	Safety i	n	
CO3	Analy	se the v	the various Noise and pollution in automobiles the modern Vehicle operation and control using microcontrollers										
CO4	Explai	in the m	nodern	Vehicle	operat	ion and	contro	1 using	microco	ontroll	ers		
CO5	Basic	knowle	dge in	Vehicle	autom	ation sy	stems						
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M												
CO2							M						
CO3			Н		M								
CO4			Н		M								
CO5	M		Н				L						

TRENDS IN POWER PLANTS

Hybrid vehicles - Stratified charged / learn burn engines - Hydrogen engines - battery vehicles - Electric propulsion with cables - Magnetic track vehicles.

SUSPENSION BRAKES AND SAFETY

Air suspension - Closed loop suspension - antiskid braking system, Retarders, Regenerative braking safety cage - air bags - crash resistance - passenger comfort.

Course Topics

NOISE & POLLUTION

Reduction of noise - Internal & external pollution control through alternate fuels/power plants - Catalytic converters and filters for particulate emission.

VEHICLE OPERATION AND CONTROL

Computer Control for pollution and noise control and for fuel economy - Transducers and actuators - Information technology for receiving proper information and operation of the vehicle like optimum speed and direction.

VEHICLE AUTOMATED TRACKS

Preparation and maintenance of proper road network - National highway network with automated roads and vehicles - Satellite control of vehicle operation for safe and fast travel.

Text Book

1) "Bosch Hand book", 3rd Edition, SAE, 1993.

References

1) Beranek.L.L. "Noise Reduction", McGraw-Hill Book Co., Inc, New York, 1993.

AUT316				OFF R	OAD V	EHICLI	ES			L 3		P C 3
Prerequisite	Nil										U	<u> </u>
Objective(s)		end of the			dents wi	ll be able	e to unde	erstand t	he variou	s Off ro	ad vehi	cle and
Course Outco	me(s)											
CO1	Unders	tand Cla	ssificatio	on and re	quireme	nts of of	f road ve	hicles				
CO2	Describ	oe the co	ncepts of	f land cle	earing m	achinery	7					
CO3	Unders	tand and	apply th	ne conce	ot of var	ious eart	h movin	g vehicle	÷			
CO4	Know t	the differ	ence of	operation	n of scra	ppers an	d graders	5				
CO5	Basic d	lescriptio	n about	shovels	and ditcl	ners						
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н										M
CO2		Н								•		M
CO3				Н	Н				M			
CO4		Н		Н								M
CO5					Н							

Course Topics

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Power plants, chassis and transmission, Multi-axle vehicles.

LAND CLEARING MACHINES

Bush cutter, stampers, Tree dozer, Rippers

EARTH MOVING MACHINES

Bulldozers, cable and hydraulic dozers. Crawler track, running and steering gears, scrapers, drag and self-powered types - Dump trucks and dumpers - Loaders, single bucket, multi bucket and rotary types - Power and capacity of earth moving machines

SCRAPERS AND GRADERS

Scrapers, elevating graders, self-powered scrapers and graders.

SHOVELS AND DITCHERS

Power shovel, revolving and stripper shovels - drag lines - ditchers - Capacity of shovels.

Text Book

1) Wang.J.T., "Theory of Grand vehicles", John Wiley & Sons, New York, 1987.

- 1) Abrosimov. K. Bran berg.A. and Katayer.K., "Road making Machinery", MIR Publishers, Moscow, 1971.
- 2) Off the road wheeled and combined traction devices Ashgate Publishing Co. Ltd. 1998.

AUT317		ENED	CV EC	OI OCI	Z ENIVI	RONMI	TNIT Q. C	COCIET	w	L	T	P C
AU1317		ENER	GI, EC	OLOGI	, ENVI	KUNWII	LINI & S	OCIEI	Y	3	0) 3
Prerequisite		nowledg										
Ob:4:(-)	To instru	ict the ba	sic scient	tific knov	vledge oı	n the envi	ironment	and hum	nan impad	cts on va	rious	
Objective(s)	element	s of envi	ronment	and ass	essment	tools.						
Course Outco	me(s)											
CO1		ognize er						lopment	al activit	ies		
CO2		gorize so										
CO3	To Ider	ntify the	environr	nental po	ollutants	and aba	tement d	evices.				
CO4	To prov	ide som	e basic c	concepts	on ethic	s and hu	man righ	ıts.				
CO5	To stres	ss the rol	e of engi	ineer to t	he socie	ty, enviro	onment a	nd susta	inability.	•		
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L		M				S					
CO2									L			
CO3			Н									
CO4				L				M				
CO5												L
	·				Course	e Topics						

INTRODUCTION

Introduction of energy scenario, Conventional and non-conventional resources of energy, utility and waste management of thermal, hydral energy. General idea of solar, Wind, Bio-mass, Geothermal, Tidal and Wave energy, Sources and waste management of nuclear power energy. Electromagnetic energy, radio frequency and microwaves, its biological effects.

SOLID WASTE TREATMENT

Global warming, depletion of ozone layer, human activity and meteorology, Genetic and plant bio-diversity, EL-Nino phenomenon and its effects. Solid waste, waste disposal methods, recycling of solid waste and its management.

AIR POLLUTION AND TREATMENTS

Atmosphere - introduction, Structure of the atmosphere, Chemical and Photochemical reactions in the atmosphere, primary air pollutants - Sources, control and harmful effects of CO, NOx, S0x, HC, particulars, sampling techniques, Air pollution from automobiles, Photochemical smog, Acid rain some case studies of air pollution.

WATER POLLUTION AND TREATMENTS

Hydrosphere - Aquatic environment, organic and inorganic water pollutants, Domestic and Industrial waste water treatment, -Aerobic and anaerobic treatment processes, sampling and preservation, some case studies of water pollution.

NOISE POLLUTION

Lithosphere and Noise Pollution - Introduction of Land and Soil pollution, Control and disposal, harmful effects. General introduction of noise pollution and its effects. Sound unwanted form of noise, changes, and Traffic noise. Prediction and control.

Text Book

1) Richard Wilson, "Energy, Ecology and the Environment", Academic press, 1974.

AUT318			V	EHICL	E MAIN	NTENAI	NCE			L		P	C
							., 02			3	0	0	3
Prerequisite	Basic k	nowledg	ge in Aut	omobile	enginee	ring							
Objective(s)	To und manage		he vehic	ele conse	rving rec	cords, sc	hedules,	auxiliari	es systen	n, chass	is and er	ngin	ie
Course Outco	me(s)												
CO1	To mai	ntain rec	ord and	schedule	of vehic	cle.							
CO2	To capa	able to ir	nspect fu	el system	, lubrica	tion syste	em, engin	e oil and	other au	xiliaries	system.		
CO3	Able to	to repair and overhauling of engine by using special tools.											
CO4	Ability	y to service the automotive chassis and its sub systems.											
CO5	To repa	air of veh	icle body	y, tinkerii	ng of bod	ly and sea	rvicing o	f door lo	cks.				
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	M								L				
CO2		M			M								
CO3		M	M										
CO4													
CO5				L							Н		
		•	•	•	Course	e Topics	-				-		

RECORDS AND SCHEDULE

Maintenance Records and Schedule: Importance of maintenance, scheduled and unscheduled maintenance, preventive maintenance details, breakdown maintenance details vehicle log books, maintenance record forms, different service garages & its layout.

AUXILIARIES MAINTENANCE

Maintenance, Servicing of Auxiliaries: Cooling system service, radiator, water pump service aspect, anti corrosion additives, anti freezing solutions Petrol fuel and diesel fuel system maintenance, lubrication system service, engine oil change, engine oil topping up, oil filters maintenance, oil relief valve Chassis lubrication, lubrication charts, head light focusing and adjustment.

ENGINE MAINTENANCE

Maintenance, Repair and Overhauling of Engine: Dismantling of engine, cleaning, and checking of components visually and dimensionally, reconditioning methods of engine components, engine tune-ups, assembly of engine components, special tools used for maintenance, repair and overhauling of engine.

CHASSIS MAINTENANCE

Maintenance, Repair and Overhauling of Chassis Drive-line Components: Servicing, repair & maintenance of clutch, maintenance, repair and servicing of gear box, servicing of propeller shaft, servicing and maintenance aspects of differential unit, servicing of front axle and rear axle, suspension system of both rigid and independent types, servicing of brake systems, hydraulic, air systems, brake bleeding and brakes adjustments, maintenance and servicing of steering system, wheel balancing, wheel alignment, maintenance of tyres, tyre rotation.

VEHICLE BODY MAINTENANCE

Maintenance and Repair of Vehicle Body: Special tools used for body repair, minor body panel beating, tinkering of body works, polishing and painting of new and old vehicle body, servicing of door locks, passenger seat maintenance

Text Book

1) W. Steed, "Mechanics of Road Vehicles", llefe Books Ltd. London

- 1) P. M. Heldt, "Automotive Chassis", Chilton Co. NK
- 2) A.W. Judge, "Car Maintenance & Repair Motor Manual".
- 3) Heisler Hein Z., "Vehicle and Engine Technology", Vol. I, English Language Book Co.
- 4) John B. Heyhood, "Internal Combustion Engines Fundamentals", McGraw Hill

AUT319			E	OHNDI	RY ENG	INEED	INC			L	T 1	P (C
AU1319			Г	OUNDI	XI ENG	HILLER	ING			3	0 () [3	3
Prerequisite	Basic k	nowledg	ge in mar	nufacturi	ng techn	ology.							
Objective(s)					tern allow and their			of mould	ding sand a	and			
Course Outco	me(s)												
CO1	Able to	design a	and fabri	cate the	pattern f	or auton	notive ap	plication	1.				
CO2	Able to design and fabricate the pattern for automotive application. Capable to perform the melting practice for ferrous and non-ferrous metal alloys. Able to approach the casting techniques for particular applications.												
CO3	Able to	1 01											
CO4	To desi	ign gatin	g system	, types o	of risers,	direction	nal solidi	fication	and shrin	kage.			
CO5	To extr	apolate o	easting d	efects, fe	oundry la	ayout, po	ollution c	ontrol an	d safety in	n found	ries.		
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	M			L									
CO2		L											
CO3	M	Н							L				
CO4					L		M				Н		
CO5		L	M										
					Course	e Topics							

PATTERN PREPARATION AND MOULDING

Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation, Sand moulding: green sand moulding, dry sand moulding, skin dry sand moulding, core sand moulding, loam moulding, fluid sand process, shell moulding, pit and floor moulding, carbon-di-oxide process.

MELTING PRACTICE

Melting practice and special precautions for steels, alloy steels, cast irons, aluminium alloys, copper alloys and magnesium alloys, safety considerations, fluxing, degassing and inoculation

CASTING TECHNIQUES

Sand casting, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, continuous casting, squeeze casting, full mould process.

DESIGN OF CASTINGS AND FOUNDRY METALLURGY

Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, directional solidification, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Concepts of pouring, solidification and shrinkage, inoculation and modification of cast irons and Al-Si systems.

ETTLING, INSPECTION AND AUTOMATION

Cleaning and repair of castings. Casting defects and remedies. Heat treatment of castings. Inspection of casting. Principles of mechanisation, automation and foundry layout. Pollution control and safety considerations in foundries. Functional design, simplification of foundry practices, metallurgical design

Text Books

- 1) Heine. R.W., Loper. C.R., Rosenthal, P.C. "Principles of Metal Casting", Tata McGraw-Hill Publishing Co., Ltd., New Delhi, 1995.
- 2) Jain.P.L., "Principles of Foundry Technology", Tata McGraw-Hill Publishing Co., Ltd., New Delhi, 1995.

- 1) Ramana Rao.T.V. "Metal Casting Principles and Practice", New Age Pub. Co., New Delhi, 1996.
- 2) Beeley.P.R., "Foundry Technology", Butterworths, London, 1982.
- 3) Srinivasan.N.K, "Foundry Engineering", Khanna Tech Publications, New Delhi, 1994.
- 4) ASM Metals hand Book. Vol. 15. "Casting", ASM International, 10th Edition, 1991

AUT320		COMDI	TED CI	INTIT A	TION O	E IC EN	IGINES	DDOCI	700	L	T	P	C
AU 1320	'	COMPC	I EK SI	WIULA	HON U	r ic en	IGINES	PROCI	199	3	0	0	3
Prerequisite		nowledg											
Objective(s)									sed in the formance			١.	
Objective(s)		eristics of			illon icci	imques u	o estimat	e the per	TOTTIIATICC	and cn	111551011		
Course Outco													
CO1									n an engi				
CO2													
CO3		mulate SI engine with adiabatic combustion, fuel vaporization and full throttle operations. istinguish progressive combustion with gas exchange process and validate pressure crank e diagram.											
CO4			nraccion	of simu	lated val	lyes and	heat tran	cfor pro	2000				
CO5									stimation.				
Mapping of C			lulation	or Cr Cn	gine per	ioiiiaiic	c and poi	iution Cs	stiiiiatioii.				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	р	O12
CO1	M	102	103	104	103	100	107	100	107	1010	1011	1	012
CO2	1V1	Н		M	M				Н			-	
		П		IVI	IVI						3.4		
CO3									M		M		
CO4		M		M						M			
CO5										Н			
					Course	e Topics							

INTRODUCTION

Introduction - Heat of reaction - Measurement of URP - Measurement of HRP - Adiabatic flame temperature: Complete combustion in C/H/O/N Systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion. Calculation of adiabatic flame temperature - Isentropic changes of state.

SI ENGINE SIMULATION WITH AIR AS WORKING MEDIUM

Deviation between actual and ideal cycle - Problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vapourisation, full throttle operation - efficiency calculation, part-throttle operation, super charged operation.

PROGRESSIVE COMBUSTION

SI Engines simulation with progressive combustion with gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance.

DIESEL ENGINE SIMULATION

Multi zone model for combustion, different heat transfer models, equilibrium calculations, simulation of engine performance, and simulation for pollution estimation.

Text Book

1) Ganesan.V. "Computer Simulation of spark ignition engine process", Universities Press (I) Ltd, Hyderbad, 1996.

- 1) Ramoss.A.L., "Modelling of Internal Combustion Engines Processes", McGraw Hill Publishing Co., 1992.
- 2) Ashley Campbel, "Thermodynamic analysis of combustion engines", John Wiley & Sons, New York, 1986.
- 3) Benson.R.S., whitehouse.N.D., "Internal Combustion Engines", Pergamon Press, oxford, 1979.

A LIT222		TV	o wiii	rri rd	S AND T	THDEE	WHEE	LEDC		\mathbf{L}	T I	P C	
AUT322		1 1	VO WH	LLLEK	S AND	IHKEE	WHLE	LEKS		3	0 (3	
Prerequisite	Automo	otive Eng	gines, A	utomotiv	e Chassi	is.							
Objective(s)	wheele	elop the rs. elop the							details of	f two and	d three		
Course Outco	me(s)												
CO1	Unders	tand the	working	of two	and four	stroke ei	ngines.						
CO2	Unders	tand the	nd the working of two and four stroke engines. nd the functioning of clutch and gear box. wheels, tyres, suspensions and braking systems.										
CO3	Know t	the whee	ls, tyres,	suspens	sions and	braking	systems	-					
CO4	Familia	rize the	latest mo	odels of	two whe	elers.							
CO5	Unders	tand the	operatio	ns of thr	ee wheel	lers and	latest mo	dels of t	hree who	eelers.			
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н		L	Н					M		M		
CO2	M	L		Н	L				M		M		
CO3	L	Н		L					Н		M		
CO4	L	L	M								Н		
CO5	M	Н	L						M				

THE POWER UNIT

Two stroke and four stroke SI engines, merits and demerits. Symmetrical and unsymmetrical port timing diagrams. Types of scavenging processes – merits and demerits. Scavenging efficiency, scavenging pumps, rotary valve engine, fuel system, lubrication system. Magneto coil and battery coil spark ignition system, electronic ignition system, starting system- kick starting system

Course Topics

CHASSIS AND SUB SYSTEMS

Main frame – types. Chassis and shaft drive. Single, multiple plate and centrifugal clutches. Gear box and gear controls. Front and rear suspension systems – shock absorbers. Panel meters and controls on handle bar

BRAKES AND WHEELS

Drum brakes, disc brakes, front and rear brake links layouts. Brake adjustment. Spoked wheel, cast wheel, disc wheel – disc types. Tyre and tube for two and three wheelers

TWO WHEELERS

Case study of major Indian models of scooters, motor cycles and mopeds like Bajaj, Honda, LML scooters, enfield, TVS, Suzuki, Hero, Yamaha. Servicing and maintenance

THREE WHEELERS

Case study of Indian models. Front engine and rear engine auto rickshaws, pickup vans, delivery van and trailer.

Text Book

1) Irving. P. E., "Motor cycle engineering", Temple press book, London, 1982.

- 1) The motor cycle manual, Temple press ltd., London, 1990
- 2) Marshall cavensih, Encyclopedia of motor cycling, 20 volumes, New York and London, 1989
- 3) Bryaut. R. V., Vespa Maintenance and Repair series

MEC321			ОРТ	TIMIZA	TION 1	TECHN:	IQUES			L 3		P C 3		
Prerequisite	Stude	nts shou	ld know	the subj	ect Engi	neering N	Mathema	tics.		<u> </u>	U	0 3		
Objective(s)	This o		vill focus	s on ma					emphasis	s will b	e			
Course Outco	me(s)													
CO1		stand th on makir		concept	of optin	nization	and how	v it is u	sed as a	tool fo	or			
CO2	and in	teger pro	grammi	ng		•			n linear/r		1 0	amming		
CO3							he matl	nematica	l approp	priate t	0			
CO4	Show	logical t	on problems relevant to engineering. cal thinking in problem solving.											
CO5	Devel	op mathe	ematical	optimiza	ation mo	dels for a	a range o	f practic	al proble	ms.				
CO6		aint the s em using						to solve	hand eng	gineerin	g			
CO7		iarize the			tate the	art tools	for solv	ing clas	sical con	nbinatio	n			
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M				M			M						
CO2	M				L			M						
CO3	Н				M			Н						
CO4	L				L			M						
CO5	M				M			Н						
CO6	Н				L			M						
CO7	M							L				L		

INTRODUCTION TO OPTIMIZATION

Classification of optimization problems - applications of optimization - concepts of design vector- design constraints - constraint surface - objective function surfaces and multi -level optimization - quadratic programming- non-linear programming - unconstrained optimization techniques- basics of constrained optimization.

Course Topics

UNCONSTRAINED OPTIMIZATION

Steepest-descent method-Newton methods - Quasi-Newton methods- linear/nonlinear conjugate gradient methods-interval reduction methods- line-search methods- trust-region methods-local and global convergence.

NONLINEAR EQUATIONS

Newton's method - modified Newton's methods; Broyden's (quasi-Newton) method-Inexact Newton methods - the bisection method - line-search methods and merit functions- trust - region methods- local and global convergence.

CONSTRAINED OPTIMIZATION

Lagrange multipliers- Karush - Kuhn-Tucker conditions - line-search methods and merit functions-active-set methods (for inequality constraints) - penalty function methods (for equality constraints) - reduced-gradient and gradient-projection methods - augmented Lagrangian and projected Lagrangian methods - Barrier methods (for inequality constraints) - interior-point methods (for inequality constraints) - sequential linearly constrained programming- sequential quadratic programming.

RECENT TECHNIQUES IN OPTIMIZATION

Convexity; linear programming and simplex method- quadratic programming- duality-nonlinear least-squares

problems-variational calculus- nonsmooth optimization-dynamic optimization and the maximum principle of pontryagin- dynamic programming and the hamilton-Jacobi-Bellman equation-neural networks and the backpropagation algorithm- stochastic optimization- simulated annealing- genetic algorithms- neural network based optimization-optimization of fuzzy systems.

Text Book

1. Edwin, K. P., Chong, and Stanislaw, Zak, H., An Introduction to Optimization, Wiley-Interscience, 2nd Edition, 2001.

References

- 1) Jorge Nocedal and Stephen Wright, Numerical optimization, Springer, New York, Springer Series in Operations Research and Financial Engineering, Second edition, 2006.
- 2) Numerical methods for unconstrained optimization and nonlinear equations by John E. Dennis and Robert B. Schnabel, Prentice Hall, Englewood Cliffs, NJ, 1988, reprinted by SIAM publications, 1993.
- 3) Fletcher, R., Practical methods of optimization, John Wiley and Sons, Chichester, New-York, Second edition, 1987.
- 4) Philip, E Gill., Walter Murray and Margaret, H, Wright, Practical optimization by Academic Press, New York, 1981.
- 5) David G. Luenberger, Linear and nonlinear programming by, Addison-Wesley Publ. Comp., Reading, Second edition, 1984.
- 6) Frederic Bonnans, J., Jean Charles Gilbert, Claude Lemarechal, Claudia, A., Sagastizbal Numerical Optimization: Theoretical and Practical Aspects, Springer Series, Universitext, Second edition 2006.

MEC327			П		D MASS	STRAN	SFFR			L		P C	
WIEC327										3	0	0 3	
Prerequisite	Knowle	edge of	Thermoo	dynamic	s and Flu	iid Mech	nanics (M	1EC202,	MEC203)			
Objective(s)	of vario	ous mode tion of v rmal ana	es of hea arious ex	t transfe xperimei	r, like, contal heat	onductio transfer	n, conve correlati	ction and ons in er	erstanding d radiatio ngineering erstand th	n and to g calcul	o unders ations, t	tand the o learn	
Course Outco	me(s)												
CO1	To und	erstand t	he conce	ept of mo	odes of t	ransfer (conducti	on, conv	ection)				
CO2	To ider	dentify and analyze the mechanism of heat and mass transfer correctly											
CO3	To sol	-	oblems 1	to enable	the desi	ign and a	analysis (of heat ex	xchanges	using I	LMTD a	nd NTU	
CO4			olve the and cyli		s in 1-D	and 2-D	steady s	tate heat	conducti	ion in p	lane wal	1,	
CO5	To dis	cuss the	free and	forced c	convection	n and to	perform	the calc	ulations.				
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	L			Н				M			M	
CO2	Н	M	M		Н		L					M	
CO3	Н	M	L				L		M			M	
CO4	M	L	M				L		M		L	M	
CO5	Н	L	L		M				M		L	M	
					Course	e Topics	, <u> </u>						

CONDUCTION

Conduction – Fourier law of heat conduction, heat generation, pin fins, transient conduction, lumped capacitance model.

CONVECTION

Convection – introduction, governing equations, boundary layer concept, free convection - vertical plate, horizontal cylinder, horizontal plate - forced convection – laminar flow, turbulent flow, Reynolds analogy.

CONVECTIVE PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Condensation and boiling – boiling modes, correlations, forced convection boiling, laminar film condensation on a vertical plate, turbulent film condensation - heat exchangers – LMTD and NTU analysis, fouling factor, effectiveness.

RADIATION

Radiation – laws of radiation, black body radiation, shape factor, radiation exchange between gray surfaces, radiosity, irradiation.

MASS TRANSFER

Mass transfer – Ficks law of diffusion, forced convective mass transfer, heat and mass transfer analogies.

Text Book

1) Sachdeva, R.C., Fundamentals of Engineering Heat and Mass Transfer, New Age International, 1995.

- 1) Yadav, R., Heat and Mass Transfer, Central Publishing House, 1995.
- 2) Ozisik, M.N., Heat Transfer, McGraw-Hill Book Co., 1994.
- 3) Nag, P.K., Heat Transfer, Tata McGraw-Hill, New Delhi, 2002.
- 4) Holman, J.P., Heat and Mass Transfer, Tata McGraw-Hill, 2000.
- 5) Kothandaraman, C.P., Fundamentals of Heat and Mass Transfer, New Age International, New Delhi, 1998.
- 6) Frank, P., Incropera and David, P. D., Fundamentals of Heat and Mass Transfer, John Wiley and Sons, 1998.

AUT402			ADVA	NCED '	тиг∧р	Y OF I	TENCI	NEC		L	T	P	C
AU 1402			ADVA	INCED	IHLUK	A OF IC	. ENGI	NES		3	0	0	3
Prerequisite	Basi	c knowl	edge on	the IC e	ngines ar	nd their v	vorking	as well a	s the com	ponent	s of eng	ine	
Objective(s)	То g	gain kno	wledge a	about the	e workin	g of I.C	engines	and the	phenome	ena of	combus	tion	and
Objective(s)	mod	eling.											
Course Outco	me(s)		knowledge on different operating cycles of an IC engine										
CO1		knowledge on different operating cycles of an IC engine											
CO2	Acquire	re the information on fuels and their properties related to combustion in engine rn about different engines which are specially used on marine and locomotives											
CO3	To lear	n about o	different	engines	which a	re specia	lly used	on marii	ne and loc	comotiv	es		
CO4	To kno	w about	the perfo	ormance	of the IC	engines	5.						
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1		S			S		M						
CO2		M	M					S	S				
CO3				S							S		
CO4				L					S	M	S		

CYCLE ANALYSIS

Operating cycles of S.I. and C.I. engines and Gas turbines - Comparison of Air standard cycle - Fuel air cycle and actual cycle.

Course Topics

COMBUSTION OF FUELS

Combustion stoichiometry of petrol, diesel, alcohol and hydrogen fuels - Chemical energy and heating values - Chemical equilibrium and maximum temperature - SI engine combustion - Flame velocity and area of flame front - CI engine combustion. Fuels spray characteristics - droplet size, penetration and atomization.

ADVANCES IN IC ENGINES

Adiabatic and L.H.R. engines - MAN combustion chamber and multifuel engines - Stratified charged and lean burn engines - Locomotive and marine engines.

OPERATION AND PERFORMANCE

Computer control of engine parameters for pollution control and better efficiency - Closed loop control of engine parameters - Hybrid operation - performance maps.

Text Book

1) Ganesan.V., "Internal combustion engines", Tata McGraw Hill Publishing Co, 1994

- 1) Ganesan.V., "Compute Simulation of Spark Ignition engine process", Universities Press (India) Ltd, Hyderabad, 1996.
- 2) John.B., Heywood, "Internal Combustion Engine Fundamentals", McGraw Hill Publishing Co., New York, 1990.

A LIT 402		τ.	THO	E MIDD	ATION	0 NOI	CE CON	TDOI		L	T I	P C		
AUT403		V	EHICL	E VIBR	AHUN	& NOIS	SE CON	IROL		3	0) 3		
Prerequisite						related								
Objective(s)					the vibe and vib	ration an rations.	d noise	on vehic	les and 1	to make	modific	ation o		
Course Outco	me(s)													
CO1	To kno	w about	the vario	ous types	s of vibra	ition at u	ndampe	d conditi	on					
CO2	To gair	nin knowledge in brief about the vibrations under damped condition												
CO3	Analyz	yze about the forced vibration system and to reduce the vibrations												
CO4	Unders	erstand the vibration system with two degree of freedom												
CO5	Learn a	bout the	sources	of noise	and met	thods to	reduce it	-						
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		S			S									
CO2		S	L			S				M				
CO3		S				L	L		M	S				
CO4						M	L		M					
CO5			L		S				S	S	S	S		
					Course	e Topics								

UNDAMPED FREE VIBRATION

Introduction, Single degree of freedom System, Undamped free vibration, Natural frequency of free vibration. Raleigh Method stiffness of spring elements, Effect of Spring mass.

DAMPED FREE VIBRATION

Introduction, Single degree of freedom system, Different type of damping. Concepts of critical damping and its importance, response study of viscous damped system for case of under damping. Critical damping and over damping Logarithmic decrement.

FORCED VIBRATIONS

Single degree of freedom system, Steady state solution with viscous damping due to harmonic force. Solution by complex algebra, Concept of response reciprocating and rotating unbalance vibration Isolation, Transmissibility ration, Energy dissipated by damping, Equivalent viscous damping, Structural damping, Sharpness of resonance, Base excitation.

Vibration measuring instruments, Accelerometer and vibrometer, Whirling of shafts with and without damping, discussion of speeds above and below critical speeds.

SYSTEM WITH TWO DEGREE OF FREEDOM SYSTEM

Introduction, Principle modes and normal modes coordinate coupling, generalized and principle coordinates. Free vibrations in terms of initial conditions, geared systems.

Forced oscillations- Harmonic excitation. Applications-Vehicle suspension. Dynamic vibration absorber, Dynamics of reciprocating engines.

NOISE CONTROL

Noise and Noise Control-Sound, Noise Decibel scale, Pressure and density level, addition of levels, Overall Noise from different frequency Ranges, Sound Level meters, Perceived Noise level, Traffic Noise Index, NC curves, Building Acoustics, Effect of Noise on people, Noise reduction, Noise due to industrial equipments, Important I.S. Codes related to Noise.

Text Book

1) Singiresu S.Rao, Mechanical Vibrations, Pearson Education, New Delhi, 2004.

- 1) Kewal Pujara, Vibrations and Noise for Engineers, Dhanpat Rai and Sons, 1992.
- 2) Bernard Challen and Rodica Baranescu, Diesel Engine Reference Book, SAE International, Second edition, 1999.
- 3) Julian Happian and Smith, An Introduction to Modern Vehicle Design, Butterworth Heinemann, 2004.
- 4) John Fenton, Handbook of Automotive body Construction and Design Analysis Professional Engineering Publishing, 1998.

AUT404			TRAC	TOR A	ND FAI	RM EQ	ШРМЕТ	NTS		L	T I	PC
7101404			11010	JION	IIID I'II	MIT EQ		115		3	0 (3
Prerequisite		c knowl rol techr		function	of Trac	tors and	Farm E	quipmer	it as well	as the	ir operat	ion and
Objective(s)			nd the tre ystem et		he tracto	rs and fa	rm equip	ments, t	heir suspe	ension,	cooling	system,
Course Outco	me(s)											
CO1	To gain	knowle	dge on t	he tracto	r classifi	ication a	nd its co	mponent	S			
CO2	To acqu	uire skills about the control of tractor and operation of its engine.										
CO3	To kno	ow about the engine frame of tractor and the tractor mechanism										
CO4	To und equipm	derstand about the cooling, lubrication and fuel system of a Tractor as well as farm nent										
CO5	To lear	n about 1	he farm	equipme	ent const	ruction a	ınd appli	cations.				
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		S							S			
CO2				S			M		M			
CO3			M	S	M				S		S	M
CO4							M		S	M	S	S
CO5		S								S	S	S
					Course	e Topics						

GENERAL DESIGN OF TRACTORS

Classification of tractors - Main components of tractor - Safety rules.

CONTROL OF THE TRACTOR AND FUNDAMENTALS OF ENGINE OPERATION

Tractor controls and the starting of the tractor engines - Basic notions and definition - Engine cycles - Operation of multicylinder engines - General engine design - Basic engine performance characteristics.

ENGINE FRAME WORK AND VALVE MECHANISM OF TRACTOR

Cylinder and pistons - Connecting rods and crankshafts - Engine balancing - Construction and operation of the valve mechanism - Valve mechanism components - Valve mechanism troubles.

COOLING SYSTEM, LUBRICATION SYSTEM AND FUEL SYSTEM OF A TRACTOR

Cooling system - Classification - Liquid cooling system - Components, Lubricating system servicing and troubles - Air cleaner and turbo charger - Fuel tanks and filters - Fuel pumps.

FARM EQUIPMENTS

Working attachment of tractors - Farm equipment - Classification - Auxiliary equipment - Trailers and body tipping mechanism.

Text Book

1) Rodichev and G.Rodicheva, "Tractor and Automobiles", MIR Publishers, 1987.

AUT405		PRO	DDUCT	ION PR	OCESS	ES FOR	AUTO	MOTIV	Έ	L	T]	P C			
AU 1405				C	OMPO	NENTS				3	0	3			
Prerequisite	Basi	c knowl	edge in r	nanufact	turing tec	chnology	and au	tomotive	compone	ents pro	duction				
						f automo									
Objective(s)			nd abou	it the to	echnolog	nes inco	rporated	in the	producti	on of	the auto	omotive			
		ponent.													
Course Outco															
CO1	To und	erstand a	bout the	concept	behind	the meta	llurgy								
CO2		-	tire the skills and knowledge in the forming process and their application in the ve sector.												
602	To lear	n about	e sector. bout the casting process and how the automotive components are made with machining												
CO3	process			0 1				1				Ū			
CO4	To gain	knowle	dge abou	it the ge	ar manuf	acturing	process								
CO5	Unders	tanding a	about the	e recent 1	rends in	the man	ufacturii	ng of aut	omotive c	ompon	ents				
Mapping of C	Os with	POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1		L		_											
CO2				S					M						
CO3				S											
CO4				S			S		S	M					
CO5		M	L		M				S		S				

Course Topics

POWER METALLURGY

Process flow chart - Production of metal powders and their raw materials - Manufacture of friction lining materials for clutches and brakes - Testing and inspection of PM parts.

FORMING PROCESS

Forging - process flow chart, forging of valves, connecting rod, crank shaft, cam shaft, propeller shaft, transmission gear blanks, foot brake linkage, steering knuckles, Extrusions: Basic process steps, extrusion of transmission shaft, steering worm blanks, brake anchor pins, rear axle drive shaft, axle housing spindles, piston pin and valve tappets. Hydroforming: Process, hydro forming of manifold and comparison with conventional methods- Hydro forming of tail lamp housing. Stretch forming - Process, stretch forming of auto body panels - Super plastic alloys for auto body panels.

CASTING AND MACHINING

Sand casting of cylinder block and liners - Centrifugal casting of flywheel, piston rings, bearing bushes, andliners, permanent mould casting of piston, pressure die casting of carburettor other small auto parts. Machining of connecting rods - crank shafts - cam shafts - pistons - piston pins - piston rings - valves - front andrear axle housings - fly wheel - Honing of cylinder bores - Copy turning and profile grinding machines.

GEAR MANUFACTURING

Gear milling, Hobbing and shaping - Gear finishing and inspection.

RECENT TRENDS IN MANUFACTURING OF AUTO COMPONENTS

Powder injection moulding - Shotpeen hardening of gears - Production of aluminium MMC liners for engineblocks - Plasma spray coated engine blocks and valves - Recent developments in auto body panel forming - Squeeze casting of pistons - aluminimum composite brake rotors

Text Book

1) Heldt.P.M., "High Speed Combustion Engines", Oxford Publishing Co., New York, 1990.

- 1) Haslehurst.S.E., "Manufacturing Technology", ELBS, London, 1990.
- 2) Rusinoff, "Forging and Forming of metals", D.B. Taraporevala Son & Co. Pvt Ltd., Mumbai, 1995.
- 3) Sabroff.A.M. & Others, "Forging Materials & Processes", Reinhold Book Corporation, New York, 1988.
- 4) Upton, "Pressure Die Casting", pergamon Press, 1985.
- 5) High Velocity "Forming of Metals", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990.

AUT406			COME	HTED	A IDED	VEILLO	I E DES	ICN		L	T 1	P C
AU1400			COMI	UIEK.	AIDED	VEHIC	LE DES	IGN		3	0	0 3
Prerequisite	Kno	wledge	on desig	n of aut	omotive	compon	ents suc	h as tran	smission	, clutch	and sus	pension
Frerequisite	in de	etail										
									in the cor			
Objective(s)	aide	d vehicle	e design	and appl	ly the sai	me for th	e optimi	ım desig	ning of tl	he vehic	ele	
	com	ponents.										
Course Outco	me(s)											
CO1	Utilizat	ion of co	omputer	tools to	design tl	ne vehicl	e frame	and susp	ension sy	stem		
CO2	Develo	elopment of model of vehicle axle and the steering system with computer aided design										
CO3	Creatin	g compu	iter aideo	d design	for the c	lutch and	d its com	ponents				
CO4	To lear	n about 1	the desig	n of Gea	ır system	n with me	odeling i	n compu	iter			
CO5	Compu	ter aided	l design	of the pr	opeller s	haft and	the rear	axle hou	ising are	created		
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						M				S		L
CO2			M	S		L			L	S		M
CO3	S		M						L	M	S	
CO4	M	S								L	S	
CO5				S		L				M		M

VEHICLE FRAME AND SUSPENSION

Study of loads - moments and stresses on frame members. Computer aided design of frame for passenger and commercial vehicle - Computer aided design of leaf springs - Coil springs and torsion bar springs.

Course Topics

FRONT AXLE AND STEERING SYSTEMS

Analysis of loads - moments and stresses at different sections of front axle. Determination of bearing loads at Kingpin bearings. Wheel spindle bearings. Choice of bearings. Determination of optimum dimensions and proportions for steering linkages ensuring minimum error in steering.

CLUTCH

Torque capacity of clutch. Computer aided design of clutch components, Design details of roller and sprag type of clutches

GEAR BOX

Computer aided design of three speed and four speed gear boxes.

DRIVE LINE AND READ AXLE

Computer aided design of propeller shaft. Design details of final drive gearing. Design details of full floating. semi-floating and three quarter floating rear shafts and rear axle housings.

Text Books

1) Dean Averns, "Automobile Chassis Design", Illiffe Books Ltd, 1992.

References

- 1) Heldt.P.M., "Automotive Chassis", Chilton Co., New York, 1992.
- 2) Steeds.W., "Mechanics of Road vehicles", Illiffe Books Ltd., London, 1990.
- 3) Giles.J.G., Steering, "Suspension and tyres", Illiffe Books Ltd., London, 1988.
- 4) Newton, Steeds & Garret, "Motor vehicle", Illiffe Books Ltd., London, 1982.
- 5) Heldt.P.M., "Torque converter", Chilton Book Co., New York, 1982.
- 6) Giri.N.K. "Automobile Mechanics", Khanna Publisher, New Delhi, 1996.

AUT407			Т	DANCD	ORT M	ANACE	MENT			L	T	P	C
AU1407			1.	KANSP	OKI MI	ANAGE	ANIEM			3	0	0	3
Prerequisite									nd transp	ort ope	ration.		
Objective(s)	To s	study & 1	fill up the	e forms i	required	as per M	otor Vel	nicle Act	. ·				
Objective(s)	To e	enabling	him to w	ork in d	ifferent s	state tran	sport org	ganizatio	ns and pri	ivate o	rganizat	ion	
Course Outco	me(s)												
CO1	To kno	o know the motor vehicle act framed by the government and to understand its necessity											
CO2	To lear	learn about the taxation for the vehicles and various tax to be paid for a vehicle.											
CO3	To acq	equire some knowledge about operating the passenger transport service.											
CO4	To acq	equire the skill to maintain a self-owned goods transportation service.											
CO5	To und	erstand a	about the	traffic r	naintena	nce syste	em						
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1			S					S					
CO2			S				M	S					
CO3		M				S		L			S		S
CO4		M				S		L			S		S
CO5		M					L	S	M		S		
					Course	Topics			•			•	

MOTOR VEHICLE ACT

Short titles & definitions, Laws governing to use of motor vehicle & vehicle transport, Licensing of drivers & conductors, Registration of vehicle, State & interstate permits, Traffic rules, Signals & controls, Accidents, Causes & analysis, Liabilities & preventive measures, Design of road complex, Responsibility of driver, Public & public authorities, Offences, penalties & procedures, Different types of forms. Government administration structure, Personnel, Authorities & duties, Rules & regulations, Rules regarding construction of motor vehicles

TAXATION

Objectives, Structure & methods of laving taxation, One time tax, Tax exemption & tax renewal Insurance: Insurance types & significance, Comprehensive, Third party insurance, Furnishing of particulars of vehicles involved in accident, Award of the claims tribunal, MACT (Motor Accident Claims Tribunal), Solatium Fund, Hit & Run case, Duty of driver in case of accident, Surveyor & Loss Assessor, Surveyor's report

PASSENGER TRANSPORT OPERATION

Structure of passenger transport organizations, Typical depot layouts, requirements, Problems on fleet management, Fleet maintenance, Planning - Scheduling operation & control, personal & training-training for drivers & conductors, Public relations, Propaganda, publicity, passenger amenities, Advertisement work, Parcel traffic. Theory of fares, Basic principles of fare charging ,Differential rates for different types of services, Depreciation & debt charges, operation cost, Revenues, Economics & records.

GOODS TRANSPORT OPERATION

Structure of goods transport organizations, scheduling of goods transport, Management Information System (MIS) in passenger goods transport operation, storage & transportation of petroleum products.

ADVANCE TECHNIQUES IN TRAFFIC MANAGEMENT

Traffic navigation, global positioning System

Text Book

1) Santosh Sharma, "Productivity in Road Transport", 2nd Edition, Association of State Road Transport Undertakings, New Delhi.

- 1) Motor Vehicle Act Govt. of India Publications.
- 2) P.G.Patankar, "Road Passenger Transport in India", CIRT, Pune.
- 3) S.K. Shrivastava, "Economics of Transport"
- 4) "Transport Development in India", S. Chand & Co. Pvt. Ltd., New Delhi.

AUT408				AUTC	MOTIV	/E CAE	ETV			L	T I	P C		
AU1400				AUIC		L SAL	LII			3	0 () 3		
Prerequisite									ent of a v					
Objective(s)									equipme	nt equip	ped in a	vehicle		
		he safety	of the c	iriver, pa	assenger	and the	pedestria	ıns						
Course Outco														
CO1		now about the traffic light warning signs and the vehicle sign indication.												
CO2	To lear	n about the risks in violating the safety symbols and devices												
CO3	To und	derstand the importance of the crash test and to know the risk involved on it ze the results of the crash test and to predict the hazardous components												
CO4										nts				
CO5	To deve	elop the	vehicle v	with high	n safety a	and less l	hazard to	environ	ment.					
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		S						L						
CO2		M						L						
CO3		L					M		S					
CO4							M		M	S				
CO5			S	S					S	M	S	S		
					Course	e Topics				·				

LEARNING THE BASICS

Understanding Regulatory and Warning Signs - Guide and International Signs - Understanding the Purpose of Pavement Markings - Responding to Traffic Control Signals -Building Math Skills - Basic Operating Procedures: Automatic Transmission - Basic Operating Procedures: Standard Transmission - Acceleration, Deceleration, and Speed - Learning How to Steer the Car Building Map Skills.

RISK EVALUATION

Basic trilogy – Decision models -Balancing risks – Combining risks – Biological risk assessments –Human error analysis – Illustrative errors – Acceptable errors – Preventive measures.

CRASH TESTING

Introduction – Volunteer testing – Cadaver testing – Dummies. Crashworthiness – Compliance testing – Component testing – Competitive race testing – Proving ground testing – In field testing.

ANALYSIS AND RECONSTRUCTION

Vehicle Crush – Crash event sequence –Black box data – Momentum and energy – Injury Classifications – Isolation – Reputation - Bullet proof office on wheels –Pedestriants

FUTURE VEHICLE SAFTEY

Human interaction – Distractions – Compensatory actions – Universal design – Precautionary principle – Dealer choice and restrictions –Local issues – Display integration – Adaptive head lights – Global warming and emissions –Design safety research

Text Book

1) "Automotive vehicle safety" by Barbara J. Peters, CRC Press, USA.

Reference book

- 1) "Automotive safety" By Boy Scouts, USA, 1962
- 2) "Automotive handbookby Robert Bosch GmbH".

AUT409		THI	EORY A	ND DE	SIGN O	F JIGS	AND FI	XTURE	ES	L 3		P C 0 3			
Prerequisite	Basi	c knowl	edge abo	out the co	oncepts i	n design	of jigs a	ınd fixtu	res.		U	<u> </u>			
Objective(s)	To i	mpart th	e knowle	edge on .	Jigs and	Fixtures f the jigs	<u> </u>								
Course Outco			<u>U</u>			<u> </u>									
CO1	To und workin		the princ	ciples, fu	inctions	and desi	ign prac	tices of	Jigs, Fixt	ures an	d dies f	or pre	SS		
CO2		erstand t ng Devic	and the Principles of jigs and fixtures design, locating principles, locating elements and Devices. and the loading and unloading problems in the jigs and fixtures.												
CO3	To und	erstand t	he loadii	ng and u	nloading	problen	ns in the	jigs and	fixtures.						
CO4	To kno	w about	the vario	us types	of the b	ushes en	nployed	in design	n of the ji	gs and	fixtures.				
CO5	To stud	ly about	the desig	gn princi	ples of tl	he jigs ar	nd the fix	ktures.							
Mapping of C	Os with	POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12		
CO1	S				M				S	S					
CO2				S						S					
CO3		S		M	S										
CO4				M											
CO5	S				S					S					

INTRODUCTION

Definitions of Jigs and Fixtures - Principles of Jigs and Fixtures design - Preliminary analysis and planning of jigs and fixture parts and their materials - Basic steps in the design of jigs and fixtures - Advantages of Jigs & Fixtures.

Course Topics

LOCATION AND CLAMPING

Degrees of freedom - 3-2-1 location principle - Radial location and diamond pin location - Principle of pin location - location from plane surfaces - location from a profile - location from a cylinder - Circular location - Jamming and remedies - V location - Adjustable locators - Redundant locators - Fool proofing - Adjustable supports and centralizers Strap clamp - cam clamps - screw clamping - latch clamps - wedge clamps - pivoted clamps - eccentric operator clamp - power clamps quick acting clamps - equalizers.

LOADING AND UNLOADING PROBLEMS

Loading - Entering, locating and clamping symmetric consideration. Unloading - Bur clearance, ejectors, receivers, chip problems, relief and projection, shields and seals.

CUTTER GUIDANCE

various types of setting blocks - Press fit bushes - Renewable bushes - Slip bushes - Threaded bushes - Special bushes - Drills with attached bushing for small holes.

DESIGN OF JIGS AND FIXTURES

Three construction principles - Builtup type, casting and weldment Practising the various types of jigs - Practising the various types of milling fixtures - broaching fixtures - function of broaching fixtures - Internal and external broaching fixtures.

Text Book

1) Kempster., M.H.A., "Introduction to jig and tool design", ELBS Edition, 1990.

- 1) Henriksen, Erik.K., "Jigs and Fixtures", Design Manual Industrial Press Inc., Madison Avenue, New York, 1983
- 2) Donaldson.G.H., Lecain, Gould.V.V., "Tool design", TMH Edition, 1990.
- 3) ASTME, "Fundamental of Tool design", Prentice Hall, 1989.

AUT410			DENE	'XX/A DI	E SOUE	OCES O	E ENIED	CV		\mathbf{L}	T 1	P C
AU1410			KENE	WADL	E SOUR	RCES O	r ener	GI		3	0) 3
Prerequisite	Basi	c knowl	edge abo	ut the re	newable	energy	and noni	enewabl	e energy			
Objective(s)						e differe automo		ces of re	enewable	energy	that ar	e easily
Course Outco	me(s)											
CO1	To lear the veh		the conv	ersion o	f the sol	ar energy	y into th	e mecha	nical ener	rgy that	in term	s drives
CO2		derstand imental v		the win	nd energ	gy and	the uti	lization	of wind	energ	y for c	lifferent
CO3	To gain	skills a	out con	verting t	he bio-m	nass into	the usef	ul source	of energ	y.		
CO4			about the ful form			eo therma	al energy	y and wa	ive energ	y as we	ell as co	nverting
CO5	To lear	n about 1	he appli	cation of	f the elec	trical en	ergy in t	he auton	nobile.			
Mapping of C	Os with	POs										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		S							S		M	
CO2		M		M			M			L	M	
CO3		M	S								S	
CO4		L	S	S								
CO5		S		M			M		S	S	S	

SOLAR ENERGY

Conversion of solar energy to electrical energy - availability - advantages and limitations - Power systems.

WIND ENERGY

Wind mapping - location of wind generators - types of wind mills and generators - Induction and synchronous systems.

Course Topics

BIO-MASS

Sources of bio-mass energy - Wood and agricultural waste - Municipal waste - Animal waste - Energy conversion systems - Biogas generation from animal waste - Wood gasification - Downdraft and fluidized bed systems - Alcohol fuels.

OTHER SOURCES

Wave energy - Scope and simple systems for power generation - tidal power - scope and applications. OTEC scope fundamental principles and operating systems for power generation. Geo thermal energy - Principle and simple systems for power generation.

AUTOMOTIVE APPLICATIONS

Electric car operation with energy stored in battery - Energy converted to hydrogen engine operation – Hydrogen conversion and storage system - Relative merits - Direct operation of vehicle by biomass fuels like wood chips, rice husk and alcohol.

Text Book

1) T.Nejat Veziroyglu., "Alternative energy sources - III "Hemisphere Publishing Co., 1989.

References:

- 1) F.S.Seiler., "Alternate energy vehicle information", Wind Book Inc., 1977.
- 2) Barbara Keiler., "Energy Alternatives", Luscent books, 1990.
- 3) David Hafemeister, Henry Kelly, Barbara G.Levi, American Institute of Physics, 1985.

AUT411	A 1	DDI IED	NHME	DICAI	TECUN	NIQUES	AND	OMDIT	rinc	L	T	P	C	
AU1411	AI	FLIED	NUME	KICAL	TECH	IQUES	ANDC	OMIT U	IING	3	0	0	3	
Prerequisite		nowledg ns, matr	•	ial Diffe	erential e	equations	, differe	ntiation a	and integr	ration, I	Laplace			
Objective(s)	To anal	lyze the enentation	error for of nume	a particu erical alg	ılar num gorithms		ethod an	d apprec	ential equitate the e		y in			
Course Outco	me(s)													
CO1						n numer ctable ma			d how thems.	ney are	used to	o ob	tain	
CO2	Apply 1	ly numerical methods to obtain approximate solutions to mathematical problems.												
CO3	differer	rive numerical methods for various mathematical operations and tasks, such as interpolation, ferentiation, integration, the solution of linear and nonlinear equations, and the solution of ferential equations.												
CO4	Analyz	e and ev	aluate th	e accura	cy of co	mmon nı	ımerical	methods	5.					
CO5	Implem	nent num	erical m	ethods in	n Matlab									
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	O12	
CO1	Н	L		L	M									
CO2	Н		M	M	M									
CO3	Н		M	M										
CO4	Н	L		M	M									
CO5	M		M	Н	Н		M			M]	Н	
					Course	e Topics								

ERRORS IN NUMERICAL CALCULATIONS

Introduction, Number and their accuracy, Absolute, relative and percentage errors and their analysis, General error formula

INTERPOLATION AND CURVE FITTING

Taylor series and calculation of functions, Introduction to interpolation, Lagrange approximation, Newton Polynomials, Chebyshev Polynomials, Least squares Line, Curve fitting, Interpolation by Spline functions.

NUMERICAL DIFFERENTIATION AND INTERGERATION

Approximating the derivatives, Numerical diffrentiation formulas, Introduction to numerical quadrature, newton-Cotes formula, Gaussian Quadrature.

SOLUTION OF NON-LINEAR EQUARTIONS

Bracketing methods for locating a root, Initial approximations and convergence criteria, Newton – Raphson and Secant methods, Solution of Problems through a structural programming language such as C++ or Pascal

PARTIAL DIFFERENTIAL EQUATIONS, EIGENVALUES AND EIGENVECTORS

Solution of hyperbolic, Parabolic and elliptic equations, the eigenvalue problem, the power method and the Jacobi method for eigen value problems, Solution of problems through a structural programming language such as C++

or Pascal

Text Books

- 1) Jhon H.Mathews, "Numerical Methods for Mathematics"., PHI New Delhi.
- 2) Carnahan B.H., "Applied Numerical Methods", New York

References

- 1) M.K.Jain, "Numerical Solution of Differential Equations". Wiley Eastern, New York
- 2) S.D.Sastry., "Introductory Methods of Numerical Analysis", Prentice Hall, India

AUT412					ТМАМ	AGEMI	TIT			L	T	P	C
AU 1412				FLEE	IWIAN	AGENII	ערעע ד			3	0	0	3
Duono quigito	Basi	c knowl	edge abo	out the m	nanagem	ent of tra	nsportat	ion of pu	ablic and	transpo	rtation	of go	oods
Prerequisite	syste	em.											
Objective(s)	To 1	earn abo	out main	taining	record o	f vehicle	e operati	on and	maintena	nce, se	rvice sc	hed	ules,
Objective(s)	over	hauling	and repa	iring pro	ocedures.								
Course Outco	me(s)												
CO1	To acqu	uire skill in supervising and managing of the drivers and garage.											
CO2	To imp	art know	rt knowledge related to maintenance of vehicles.										
CO3	To kno	w about the data processing in the vehicle parts supply and management.											
CO4	To gair	knowle	dge in th	e fare st	ructure a	and the so	chedulin	g of the	transporta	ation sy	stem		
CO5	To kno	w the mo	otor vehi	cle act f	ramed by	y the gov	ernment	and to u	ınderstand	d its neo	essity		
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1						M					S		M
CO2		S					S						
CO3			M		L					S			
CO4			S			S	M						
CO5			S				L	S					

Course Topics

MANAGEMENT TRAINING AND OPERATIONS

Basic principles of supervising. Organising time and people. Job instruction training - Training devices and techniques - Driver and mechanic hiring - Driver checklist - Lists for driver and mechanic - Trip leasing - Vehicle operation and types of operations

VEHICLE MAINTENACE

Scheduled and unscheduled maintenace - Planning and scope - Evaluation of PMI programme - Work scheduling - Overtime - Breakdown analysis - Control of repair backlogs - Cost of options.

VEHICLE PARTS, SUPPLY MANAGEMENT AND BUDGET

Cost of inventory - Balancing inventory cost against downtime - Parts control - Bin tag systems - Time management - Time record keeping - Budget activity - Capital expenditures - Classification of vehicle expenses - Fleet management and data processing - Data processing systems - Software. Model - Computer controlling of fleet activity - Energy management

SCHEDULING AND FARE STRUCTURE

Route planning - Scheduling of transport vehicles - Preparation of timetable, Costs, fare structure - Methods of fare collection - Preparation of fare table.

MOTOR VEHICLE ACT

Schedules and sections - Registration of motor vehicles - Licensing of drivers - Control of permits - Limits of speed - traffic signs - Constructional regulations - Description of goods carrier, delivery man, tanker, tipper, Municipal, fire fighting and break down service vehicle.

Text Book

1) John Dolu, "Fleet management", McGraw-Hill Co., 1984.

References

- 1) Government Publication, "The Motor vehicle Act", 1989.
- 2) Kitchin.L.D., "Bus operation", Illiffe and Sons Ltd., London, III Edition, 1992.
- 3) Kadiyali.L.R., "Traffic engineering and Transport Planning".

AUT413			ш	ZDDAC	ENI ANII	D FUEL	CELLO	7		\mathbf{L}	T	P C
AU1413			п	DKUG	ELIN ALNI	DFUEL	CELLS	•		3	0	0 3
Prerequisite	Basi	c knowl	edge in a	lternate	source o	f energy	and fue	cell veh	nicles.			
Objective(s)		mpart kr ne handli	_			about th	e hydrog	gen fuel a	and the fi	uel cell	vehicles	as well
Course Outco	me(s)											
CO1	To lear	n about 1	he produ	action of	the hyd	rogen thi	ough ele	ectrolysis	s process.	•		
CO2	_		edge ab	out the	conversi	on of the	ne hydro	gen froi	n gas to	liquid	and its	storage
CO2	techniq											
CO3	To kno	w about	the fuel	cells an	d their w	orking						
CO4	To und	erstand a	bout the	differer	it types o	of fuel ce	lls and t	heir func	tion in th	ne vehic	les.	
CO5	To kno	w about	the diffe	rent fuel	system	in differe	ent vehic	eles.				
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				L			M	L	S			
CO2	M			S								
CO3		M									L	
CO4							M					
CO5											S	S

PRODUCTION OF HYDROGEN

Steam reforming – partial oxidation – water electrolysis: reverse fuel cell operation – Gasification and woody biomass conversion – Biological hydrogen production – Photodissociation – Direct thermal or catalytic splitting of water.

Course Topics

HYDROGEN CONVERSION AND STORAGE

Uses as an energy carrier – energy storage medium – Combustion uses – Stationary fuel cell – Compressed gas storage – Liquid hydrogen storage - Hybrid storage – Cryo absorbed gas storage in carbon materials – Other Chemical storage options – Comparison

INTRODUCTION TO FUEL CELLS

Electrochemistry and thermodynamics of fuel cells – Modelling aspects – Quantum chemistry approaches – Application to water splitting – Flow and diffusion modelling – temperature factor

FUEL CELLS

Molten carbonate cells – Solid oxide cells – Acid and alkaline cells – Proton \exchange membrane cells – Biofuel cells – Problems

SYSTEMS

Passenger cars – Bus, lorry – Ships, trains and airplanes – Power plants including stand –a lone systems – Building integrated systems- Portable and other small – scale systems – Problems

Text book

1) "Hydrogen and Fuel cells "Bent Sorensen, Elsevier Academic Press, 2000.

References

- 1) Hydrogen--hot stuff, cool science By Rex A. Ewing
- 2) Larminie, James (1 May 2003). Fuel Cell Systems Explained, Second Edition. SAE International. ISBN 0768012597.
- 3) Production of hydrogen for fuel cells by steam reforming of ethanol, DK Liguras, DI Kondarides, XE Verykios Applied Catalysis B, Environmental, 2003 Elsevier

AUT414				LEAN	MANUF	FACTUE	RING			L	T 1	
										3	0 (-
Prerequisite	Basi	c knowl	edge in t	he manu	ıfacturinş	g technol	logy and	process	planning	and cos	st analys	is
Objective(s)	To t	rain the	student i	n the cor	ncept of	product o	costing					
Objective(s)	To e	nable th	e student	to unde	erstand th	ie severa	1 aspects	of the p	roduct de	velopm	ent	
Course Outco	me(s)											
CO1	To prov	vide kno	wledge i	n the sta	ges of pr	oduct de	velopme	ent				
CO2	To give	knowle	dge abou	it the lea	ın tools i	n the ma	nufactur	ing proc	ess.			
CO3	To imp	art the sl	kills in th	ne just in	time an	d kaizen	manufac	cturing p	rocesses.			
CO4					sigma p							
CO5	To lear	n about t	he manu	facturin	g proces	ses and r	ecent tre	nds in m	anufactu	ring		
Mapping of C	Os with	POs										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2		L		L					S			
CO3							M					
CO4			S				S		S			
CO5		S									M	M

INTRODUCTION

Course Overview - Traditional Vs Lean Approaches To Factory - Design & Manufacturing - Lean Concepts - Added Value - Forms Of Waste

Course Topics

LEAN TOOLS

Lean Terminology - Load Leveling - Kanban - Andon - Visual Management - Quick Changeover - Producing To Takt - Supply Chain - 5s - Pull system

JUST IN TIME AND KAIZEN

Kaizen Events - Kaizen Project Selection - Planning For Kaizen Project Review - Preparation For Workshop - Lean Manufacturing Workshop - Value Stream Mapping - World Class Manufacturing Systems — Just In Time Manufacturing

SIX SIGMA AND INNOVATION

Set-Up Reduction - Cell Design - Engineering Logbooks - Logbook Review -- Workplace Integration Of Lean Manufacturing And Six Sigma - Creativity And Innovation Management

ADVANCES IN MANUFACTURING

Advanced Input Systems - Buck Knives -Discrete Event System Simulation - Computer Integrated Manufacturing - Artificial Intelligence In Manufacturing - Case study

Text Book

- 1) "Lean Manufacturing: Tools, Techniques, and How to Use Them" (APICS Series on Resource Management) by William M Feld, St.Lucie Press
- 2) "The Toyota Way" by Jeffrey Liker, McGraw-Hill, USA, 2004

- 1) Fred E. Meyers (1992). Motion and Time Study. Improving Work Methods and Management. First Edition, Upper Saddle River, NJ: Prentice Hall.
- 2) Ralph M. Barnes. Motion and Time Study Design and Measurement of Work. Seventh Edition, Quinn-Woodbine, Inc, J. Wiley.
- 3) Benjamin W. Niebel (1993). Motion and Time Study. Ninth Edition. Irwin Publishers.

AUT415			AUTO	моти	VE AIR-	CONDI	TIONIN	J C		L	T	P	C
AU1413			AUTO	MIOTIV	VE AIK-	CONDI	HONII	10		3	0	0	3
Prerequisite	Basic	knowled	lge in Re	efrigerati	ion and a	ir condi	tioning a	nd the te	mperatur	e contr	ol techni	ique	es
Objective(s)	To ena	able the	students	to know	about tl	ne compo	onents of	f the auto	motive a	ir cond	itioning	sys	tem
Objective(s)	and to	underst	and its w	orking a	and nece	ssity.							
Course Outcome	e(s)												
CO1					rinciples				stem.				
CO2					g in the a			ystem.					
CO3	To des	scribe th	e workir	ng princi	ples refr	igeration	system						
CO4									an auton				
CO5	To ma	intain a	nd servic	e the air	condition	oner of a	n automo	obile in c	ase of a f	ailure.			
Mapping of COs	with P	Os											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	S	L		S									
CO2							S		S				
CO3		S											
CO4							M		S				
CO5			S								S		S

AIRCONDITIONING FUNDAMENTALS

Basic air conditioning system - Location of air conditioning components in a car - Schematic layout of a refrigeration system. Compressor components - Condenser and high pressure service ports. Thermostatic expansion value - Expansion value calibration - Controlling evaporator temperature - Evaporator pressure regulator - Evaporator temperature regulator

Course Topics

AIR CONDITIONER - HEATING SYSTEM

Automotive heaters - Manually controlled air conditioner - Heater system - Ford automatically controlled air conditioner and heater systems - Automatic temperature control - Air conditioning protection - Engine protection

REFRIGERANT

Containers - Handling refrigerants - Tapping into the refrigerant container - Refrigeration system diagnosis - Diagnostic procedure - Ambient conditions affecting system pressures.

AIR ROUTING & TEMPERATURE CONTROL

Objectives - Evaporator care air flow through the Dash recirculating unit - Automatic temperature control – Duct system - Controlling flow - Vacuum reserve - Testing the air control and handling systems.

AIR CONDITIONING SERVICE

Air conditioner maintenance and service - Servicing heater system Removing and replacing components. Trouble shooting of air controlling system - Compressor service.

Text book

1) William H Crouse and Donald L Anglin, "Automotive Air conditioning", McGraw-Hill Inc., 1990.

References

1) Mitchell information Services, Inc, "Mitchell Automatic Heating and Air Conditioning Systems", Prentice Hall Ind., 1989.

- 2) Paul Weiser, "Automotive Air Conditioning", Reston Publishing Co Inc., 1990.
- 3) MacDonald, K.L., "Automotive Air Conditioning", Theodore Audel series, 1978.
- 4) Goings. L.F., Automotive Air Conditioning ", American Technical services, 1974.

MEC412		МП	CDO EI	ECTD	O MECI	HANIC	AT CAS	TEME		L	T	P	C
MIEC412		IVII	CKO EI	LECTR	O MEC	HANICA	AL SYS	I ENIS		3	0	0	3
Prerequisite	Basics	in Mech	anics an	d variou	s Manuf	acturing	processe	es.					
									tions. The				
Objective(s)	conside	eration in	the des	sign prod	cess of N	Micro El	ectro M	echanica	1 Systems	s with	their M	ach	ining
	and Fal	orication	techniqu	ues and t	he contr	ol metho	ds of the	ese proce	sses.				
Course Outco	me(s)												
CO1	An ove	erview o	f Micro	Electrica	l Mecha	nical Sys	stems (M	IEMS).					
CO2	To desc	cribe the	various	fabricati	on proce	esses of N	MEMS.						
CO3	A revie	w on mi	cro macl	hining pr	ocess.								
CO4	To desc	cribe the	process	design fo	or MEM	S							
CO5	An ove	rview of	reliabili	ty and p	rocess co	ontrol for	systems	S.					
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	F	PO12
CO1		Н	Н										
CO2				M	M								
CO3			M	M									
CO4	Н	Н	Н										
CO5				M			M						

FUNDAMENTALS OF MEMS

Introduction, history, development and need of micro-electro - mechanical systems -overview of MEMS technology.

Course Topics

MATERIALS AND FABRICATION PROCESSES

Different electro-physical processes used for machining - dealing with MEMS materials - relevant non - conventional processes - IC fabrication processes used for MEMS - MEMS sensors and actuators.

MICRO MACHINING

Mechanical process techniques and process models for micro-machining- Fabrication processes and design of the process sequences

DESIGN CONSIDERATION

Design consideration –process design-mechanical design –design of silicon die-design of micro fluidic net work systems-capillary electrophoresis network system.

RELIABILITY AND PROCESS CONTROL

Reliability and process control of micro manufacturing processes.

Text Book

1. Tai Ran Hsu, MEMS and MICRO SYSTEMS Design and Manufacture, TMH, New Delhi, 2001.

- 1. Vijay K Varadan, Micro Sensors, MEMS, and Smart Devices, John Wiley and sons, 2001.
- 2. Marc Madou, Fundamentals of micro Fabrication, CRC Press, 1997.

MEC418				RAPID	PROTO	OTYPIN	\G			1 3		P C 3
Prerequisite		knowled										
Objective(s)	Obtain limitati		underst	and of	Rapid I	Prototypi	ng, incl	uding it	s applica	itions,	advanta	ges and
Course Outco	me(s)											
CO1	To kno	w the ex	isting tec	chnologi	es of rap	id protot	typing					
CO2	To exp	lain the p	product c	levelopn	nent, con	ceptual	design, p	rototype	tooling e	etc.		
CO3	To prep	pare the o	cad proce	esses, so	lid mode	eling and	modify	desired t	format.			
CO4	To ider (SLS, F	-	applicati	ons, adv	antages	of rapid	prototyp	ing. To ϵ	explain all	l types o	of rpt pr	ocess
CO5		npare the To know	-		-	cess, dire	ect shell	producir	ng, casting	g proces	ss betwe	en
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н										
CO2	Н	Н	Н	Н								
CO3					Н							
CO4	M				M							
CO5		M						L				

INTRODUCTION

Introduction - basic concept - overview of existing technologies of proto type tooling - need for speed design to market operations.

Course Topics

BASICS OF TOOLING

Product development - state of the technology- conceptual design - prototype tooling - engineering pilot - limitations.

DEVELOPMENT OF DATA REPRESENTATION

CAD Processes - data requirements for solid modeling - data representation - part orientation and support - STL format - slicing – post processing.

RPT PROCESS

Rapid prototyping systems - selective laser sintering - working principles - advantages and limitations - sterolithography - working principles - applications, advantages and limitations.

OTHER SYSTEMS

Laminated object modeling - waving principles, applications - advantages and limitations – fused deposition, modeling - direct shell production casting - applications.

Text Book

1. Soenen, R., and Olling, Advanced CAD/ CAM Systems, Narosa Publishing house, 1995.

- 1. Duvvent, W. R, The Lithography Hand book, Narosa Publishing house, 1995.
- 2. Rapind News, University of Warwick, UK, 1995.

MEC420			IN	DUCTD	TAT EN	CINEE	DINC			L	T 1	P	C
MEC420			IIN.	DUSIK	IALEN	GINEE	KING			3	0 ()	3
Prerequisite	Basic	knowled	ge of ind	lustrial c	oncepts	in engin	eering fi	elds					
									e people, computat				
Objective(s)	experin	nental pr	actices.						-				
	themse	lves in a	professi	onal and	ethical 1	manner.			eering. Co				
Course Outco		ina comr	nunicate	effectiv	ery with	coneagu	ies at eve	ery ievei	in the org	ganızatı	on		
		to onnly	Imaryla	daa in is	dustrios	1							
CO1		to apply											
CO2		to funct			1 -								
CO3	Ability	to ident	fy, form	ulates, a	nd solve	s engine	ering pro	blems.					
CO4	Unders	tanding	of profes	sional a	nd ethica	l respon	sibility.						
CO5	Ability	to comn	nunicate	effective	ely.								
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1	M		L		M			M					
CO2	M		Н		L			Н	_				
CO3	M	M L H L											
CO4	M	M M M											
CO5	M		L					Н		•			

Course Topics

PLANT LAYOUT AND MATERIALS HANDLING

Plant location, - classification of layout – layout design procedures - CRAFT, ALDEP, CORELAP - materials handling systems – principles - classification of materials handing equipments - production and operation decisions.

PRODUCTIVITY MANAGEMENT AND WORK STUDY

Introduction, productivity models, organizational transformation, re-engineering, process improvement models, re-engineering tools and implementation, reverse engineering - work study - time study - method study - tools - methods.

RELIABILITY ENGINEERING

Reliability concept - reliability data analysis - prediction models - reliability management - risk assessment.

ERGONOMICS OF MANUFACTURING

Introduction - human performance - work space design - design of equipments - design of environment.

PROJECT MANAGEMENT

Phases of project management – network constructions – CPM – PERT – crashing – resource leveling - resource allocation.

TEXT BOOKS

- 1. ILO, Introduction to work study, Geneva, 1974.
- 2. Richard Francis L. and John A. White, Facilities layout and location an analytical approach, Prentice Hall Inc. 1984.

REFERENCES

- 1. Barnes, raeph.M, Motion and time study -design and measurement work, John wiley, Newyork, 1990
- 2. Khanna, O.P., Industrial Engineering and Management, Dhanpatrai Publication, 2004.
- 3. Gopalakrishnan, P., and Banerji, A.K., Maintenance and Spare Parts Management, Prentice Hall Of India, New Delhi, 1991.
- 4. Edosomwan, J.A., Organisational Transformation and Process Re-engineering, British

- Library Cataloging In Pub. Data, 1996.
- 5. Rastogi, P.N., Re-Engineering and Re-Inventing the Enterprise, Wheeler Publications, New Delhi, 1995.
- 6. Fiegenbarum, A.V., Total Quality Control, Mcgraw-Hill, Inc., 1991.
- 7. Modarres, Reliability and Risk Analysis, Maral Dekker Inc., 1993.
- 8. James Apple, M., Plant Layout and Material Handling, John Wiley, 1977.
- 9. Lee J Krajewski, Larry P Ritaman, Operations Managements, Addison-Wesley, 2000.
- 10. Prasannachandra, Project management, Tata Mcgraw Hill, 1986.

MINOR ELECTIVE

CHE325		,	COMDI	TATIO	NIAT E	HIIDD	YNAMI	CC		\mathbf{L}	\mathbf{T}	P C
CHE325		,	COMP	IAIIC	MAL F	LUIDD	INAMI	CS		3	0	3
Prerequisite	Basic	knowled	ge in Nu	merical	methods	s, Fluid n	nechanic	s and He	at transf	er.		
Objective(s)		course in roblems		the var	rious me	thods to	solve th	ne comp	lex fluid	and he	at	
Course Outco	me(s)											
CO1									h portray fferent fl			
CO2	Under		e import	ance of	finite d	ifference			plication			
CO3		e to synt	thesize th	ne divers	e approa	iches of	finite vol	lume me	thods and	d its		
CO4	recogn		articula						tions. Be			
CO5		build u							ngineerin methods			ercial
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н									
CO2	Н	Н	Н	Н								
CO3	Н	Н	Н	Н								
CO4	Н	Н	Н									L
CO5	Н	Н	Н									

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of partial differential equations - Discretization methods, finite difference and finite volume formulations - classification of PDES.

Course Topics

NUMERICAL SOLUTION OF ELLIPTICAL EQUATIONS

Numerical solution of elliptical equations - linear system of algebraic equations - iterative solution of system of linear equation.

MODEL EQUATIONS

Model equations – wave equations, numerical solution of parabolic equations, stability analysis – advanced shock capturing schemes.

DIFFUSION EQUATION

Solutions of convection, diffusion equation – conservative and non-conservative schemes – concept of artificial viscosity and numerical diffusion.

NAVIER, STOKES EQUATIONS AND ALGORITHMS

Navier, Stokes equations and algorithms - basics of grid generation, numerical solution of hyperbolic equations, burgers equation generation.

Text Books

- 1) Anderson Jr., Computational Fluid Dynamics, John Wiley, Singapore, 1995.
- 2) Chow, C.Y., Introduction to computational fluid dynamics, John Wiley, Singapore 1979.
- 3) Hirsch, A.A., Introduction to computational fluid dynamics, McGraw Hill, New York, 1989.

- 1) Wirz, H.J, Smeldern, J.J., Numerical methods in fluid dynamics, McGraw-Hill and Co., New York, 1978.
- 2) Ferziger, J.H, Milovan Peric, Computational Methods for fluid dynamics, Springer Verlag, London, 2nd Edition, 1997.
- 3) Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, London, 1997.
- 4) Bose, T.K., Computation Fluid Dynamics, Wiley Eastern Ltd, Singapore, 1988.

CHE22			COMDI		ONIAT T	IEAT TI	DANCE	ED		L	T 1	P C
CHE326			COMP	UIAII	JNAL H	IEAT T	KANSFI	ŁK		3	0 () 3
Prerequisite	Basic	knowled	lge about	structur	e of soli	ds and its	s types					
		n knowl									,	
Objective(s)		onducting							l materia	als		
		arn the la	test deve	elopmen	ts on nev	v engine	ering ma	terials				
Course Outco	/											
CO1		stand the						y bands,	energy			
CO1		oution an										
CO2		and und						applicati	ons of			
		onductin										
CO3		the impo				g materia	ls in eng	ineering	fields by	y		
		ting the v										
CO4		he know					netic mat	erials, th	eir prop	erties		
		plication										
CO5		he know				terials, th	neir prop	erties an	d signifi	cant		
		ations in	advance	d techno	ologies.							
Mapping of C			1		1	1	1	1	ı	1		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		M	M			L					
CO2	M		M									
CO3	M		M				L					
CO4	M		M	M								
CO5	M		M				L					

Course Topics

INTRODUCTION

Physical phenomena governing differential equation, energy equation, momentum equation, nature of coordinates, Discretization methods.

PARABOLIC EQUATIONS

Parabolic equations - explicit, implicit and Crank Nicholson Methods - Cartesian and Polar Coordinates - mixed boundary condition - Jacobi - Gauss, siedel and SOR Methods.

HEAT CONDITION AND CONVECTION

Heat condition and convection - control volume approach - steady and unsteady one dimensional conduction - two and three dimensional - power law scheme - simpler algorithm.

GENERAL APPLICABILITY OF THE METHOD

General applicability of the method - approximate analytical solution - Raleigh's Method- Galerkin Method, solution methods.

CONDUCTION AND DIFFUSION EQUATIONS

Isoparametric element formulations conduction and diffusion equations, heat transfer Packages, Heat 2, HEATAX, RADIAT, ANSYS.

Text Books

- 1) Muralidhar, K., Sundararajan, T., Computational fluid flow and heat transfer ,Narosa publishing house, New Delhi,2nd edition,2003.
- 2) Anderson, D.A., Tannehill, J.C and Pletcher, R.H., Computational fluid mechanics and heat transfer, Hemisphere publishing corporation, New York, 1984.

- 1) Mitchell, A.R, Grifths, D.F., Finite Difference Method in Partial Differential Equations, John Wiley and Sons, Singapore, 1980.
- 2) Suhas Patankar., Numerical Heat Transfer and Fluid Flow, (Hemisphere Series on Computational Methods in Mechanics and Thermal Science), Taylor and Francis,1st Edition ,1980.
- 3) Jaluria and Torrance, Computational Heat Transfer, Hemisphere Publishing Corporation, New York, 1986.

CIV425	I	DISAST	ER MA	NAGEN	1ENT A	ND THI	ERMOD	YNAM	ICS	1 3	-	P 0	<u>C</u>
Prerequisite	Basic k	nowledg	e about 1	the Disas	ster mana	agement	and ther	mal engi	neering		<u> </u>	•	
Objective(s)	To fam		bout the	e Disaste					her and c	limate,			
Course Outco	me(s)	/											
CO1	Able to	improv	e the ki	nowledge	e and ur	nderstand	ling of t	he disas	ster phen	omenor	1		
COI	and, its	factors.											
CO2	Unders	tand the	relations	ship of ha	azard, ris	k and vu	ılnerabili	ty					
CO3	Able to	obtain t	he skills	in role o	f educat	ion and t	raining i	n disaste	r prevent	tion.			
CO4	Able to	ensure s	kills in p	post disa	ster man	agement	activitie	S					
CO5	Able to	get the l	knowled	ge in unc	lerstandi	ng vario	us prone	zones in	India				
Mapping of C	Os with	POs				_	_						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1					M	Н	M	M					
CO2	L						M	L					M
CO3	М					М	Ţ	İ					

CO4				Н	Н	L	M	
CO5		L				M		S

Course Topics

ESSENTIAL COMPONENTS AND CO-ORDINATION IN DISASTER RESPONSE

Disaster Response Plan - Communication, Participation and Activation of Emergency - Preparedness Plans - Search, Rescue, Evacuation and other logistic management - Needs and Damage Assessment; Types and Technique - Disaster Response: Central, State, District and Local Administration - Armed Forces in Disaster Response: Role and Responsibility - Disaster Response: Police and Other organizations - Role of Multiple stakeholders in Disaster Response

HUMAN BEHAVIOR AND RESPONSE MANAGEMENT

Psychological Response and Psychological Rehabilitation - · Trauma and Stress Management - Rumour and Panic Management - Medical and Health Response to Different Disasters - Role of Information and Communication Technology in Response Management

RELIEF MEASURES

Minimum Standard of Relief - · Relief Management- essential components - · Funding Relief - short term and long term - · Disaster Site Management - Recovery

ENERGY AND IRREVERSIBILITY

Review of fundamental concepts and definitions - Review of first and thermodynamics — entropy - properties of substances - quality of energy, maximum work in a reversible process — reversible work by an open system exchanging heat only with surroundings - useful work - dead state — availability - irreversibility and Gouy-Stodala Theorem - Mathematical conditions for exact differential - Maxwell's equation - Tds equation - Thompson coefficient and Inversion curve - coefficient of volume expansion

GAS POWER CYCLES AND GAS COMPRESSORS Gas power cycles: Carnot cycle - Stirling cycle - Ericsson cycle - Air standard cycles - Otto cycle - Diesel cycle - Limited pressure cycle or Dual cycle - comparison of Otto, Diesel and Dual cycles - Brayton cycle - Aircraft propulsion - Brayton-Rankine combined cycle Gas compressors: Compression processes - work of compression - single stage reciprocating air compressor - volumetric efficiency - multi stage compression - air motors - rotary compressors - blowers and fans

Text Books

- 1) Jagbir Singh, Disaster Management: Future Challenges and Opportunities, I K International Publishing House Pvt. Ltd, 2007.
- 2) Kapoor Mukesh, Disaster Management Paperback, Saurabh Publishing House, 2010
- 3) Tushar Bhattacharya, Disaster Science and Management Paperback, McGraw Hill Education (India) Private Limited, 2012
- 4) Engineering thermodynamics by Jones and Dugans, PHI Learning Pvt. Ltd.
- 5) Gas turbine Theory & Practice, by Cohen & Rogers, Addison Weslay Longman Ltd.

- 1) Taori, K (2005) Disaster Management through Panchayati Raj, Concept Publishing Company, New Delhi.
- 2) Fundamentals of thermodynamics by Sonntag, Wiley India
- 3) 3. Fundamentals of Classical Thermodynamics by Van Wylen, John Wiley and Sons.

CSE314		DIGITAL IMAGE PROCESSING								L	T	P C		
CSE314			DIG	IIIAL I	MAGE.	rkoce	SSING			3	0) 3		
Prerequisite	Basic u	ınderstar	nding abo	out math	ematical	transfor	ms and p	artial di	fferential	equation	ns.			
Objective(s)	To und applica		the theor	retical kı	nowledge	e of digi	tal imag	e proces	sing tech	niques	and			
Course Outco	me(s)													
CO1	Acquir	e the fun	damenta	l concep	ts of a di	igital ima	age proce	essing sy	stem.					
CO2	Learn c	arn different image transforms techniques												
CO3	Apply	Apply image enhancement techniques.												
CO4	Unders	Understand the concept of restoration techniques.												
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	
CO1	M	M	L		L									
CO2			M	L										
CO3		M I I I I I I I I I												
CO4			Н		L							M	i.	
					Course	e Topics								

Course

REVIEW OF IMAGE FUNDAMENTALS

The fast Fourier transform - other separable image transforms. Image Enhancement: Background - Enhancement by point processing -spatial filtering - Enhancement in the frequency Domain - generation of spatial masks from frequency domain specifications - color image processing.

IMAGE RESTORATION

Degradation model - Diagonalisation of circulant and Block Circulant Matrices - Algebraic approach to Restoration - Inverse filtering Least mean square filter - Constrained Least Squares Restoration - Interactive Restoration - Restoration in the spatial domain - Geometric Transformation.

IMAGE COMPRESSION

Fundamentals - Image Compression Models - Elements of Information theory - Error Free Compression - Lossy Compression - Compression Standards.

IMAGE SEGMENTATION

Detection of Discontinuities - Edge linking and Boundary Detection - Threshold - Region Oriented segmentation - The use of motion in segmentation.

IMAGE REPRESENTATION AND DESCRIPTION REPRESENTATION SCHEMES

Boundary Descriptors - Regional Descriptors - Morphology - Relational Descriptors Recognition and Interpretation - Elements of Image Analysis - Patterns and Pattern Classes - Decision - Theoretic Methods - Structural Methods - Interpretation.

Text Book

1) Rafael C., Gonzalez and Richard. E., Woods, Digital Image Processing, Addison Wesley, 1992.

- 1) Pratt, Digital Image Processing, Tata McGraw Hill, 1991.
- 2) Anil K. Jain, Fundamentals of Digital Image processing, Prentice Hall of India, 1st Edition, 1998.

FFF306	EEE306 SPECIAL ELECTRICAL MACHINES							L	T 1	P C				
EEES00			SI ECI	AL ELI	ECIKIC	JALI WIA	CIIIVE	<u>.</u>		3	0 (3		
Prerequisite	Basic k	nowledg	ge in elec	trical ma	achines									
Objective(s)		oose the sart indus				.C. Mach	ines, tra	nsforme	rs and the	eir appli	cations.			
Course Outco	me(s)													
CO1	Analyz	e and de	scribe as	spects of	the cons	struction	and prin	ciples o	f synchro	nous m	achines			
CO2	Describ	ribe the construction, application and operation of transformer												
CO3	Describ	escribe the construction, application, operation and speed control of D.C.Motors												
CO4	Explair	explain the working and application of special machines like stepper motor and universal motor												
CO5	Design	an elect	ronic sy	stem us	ing appr	opriate e	electroni	c machii	nes					
Mapping of C														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н		_	Н										
CO2	Н			Н										
CO3	Н	H I I I I I I I I I												
CO4				M										
CO5			Н									M		

Course Topics SYNCHRONOUS RELUCTANCE MOTORS

Constructional features – types – axial and radial air gap motors – operating principle – reluctance – Phasor diagram - characteristics – Vernier motor.

STEPPING MOTORS

Constructional features – principle of operation – variable reluctance motor – hybrid motor – single and multi stack configurations – theory of torque predictions – linear and non-linear analysis – characteristics – drive circuits.

SWITCHED RELUCTANCE MOTORS

Constructional features – principle of operation – torque prediction – power controllers – non-linear analysis – microprocessor based control - characteristics – computer control.

PERMANENT MAGNET BRUSHLESS D.C. MOTORS AND INDUCTION MACHINES

Principle of operation – types – magnetic circuit analysis – EMF and torque equations – power controllers – motor characteristics and control - Induction voltage regulator -Synchronous induction motor - power selsyn - position selsyn - linear motors.

PERMANENT MAGNET SYNCHRONOUS MOTORS

Principle of operation – EMF and torque equations – reactance – Phasor diagram – power controllers - converter - volt-ampere requirements – torque speed characteristics - microprocessor based control.

Text Book

- 1) Miller T.J.E., Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press, Oxford, 1989.
- 2) Aearnley P., Stepping Motors A Guide to Motor Theory and Practice, Peter Perengrinus, London, 1982.

- 1) Kenjo, T., Stepping Motors and Their Microprocessor Controls, Clarendon Press London, 1984.
- 2) Kenjo, T., and Nagamori, S., Permanent Magnet and Brushless DC Motors, Clarendon Press, London, 1988.

EEE410		N	ELID A I	NETW	ODLA	NID ELIZ	ZZY LO	CIC		L	T	P	C
EEE410		11.	LUKAL	NEIW	ORK A	ND FUZ	LZY LU	GIC		3	0	0	3
Prerequisite	Basic	knowled	dge in ne	tworks									
Objective(s)									the basic elated alg		_		1
	the rec	quired an	d related	l systems	S.								
Course Outco	me(s)												
CO1		se the stu systems		the conc	epts of b	oiologica	ıl neural	systems	and math	nematic	al mode	l of	
CO2		se the stu ledge abo					vard neu	ıral netw	orks and	provid	de adequ	ate	
CO3		each about the concept of fuzziness involved in various systems and adequate knowledge out Fuzzy set theory.											
CO4	Apply	neuro fuz	zzy mode	el for cla	ssificatio	on, regre	ssion and	d cluster	ing				
CO5		hybrid ang intelli						computii	ng technic	ques ar	nd their i	olls	in
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12
CO1	Н	Н		Н									M
CO2	M	L		Н									L
CO3	Н												
CO4	M	L											
CO5	Н	L		Н									L

Course Topics INTRODUCTION TO NEURAL NETWORKS

Overview of biological Neuro-system - mathematical models of neurons - learning rules - learning paradigms – supervised - unsupervised and reinforcement learning.

FEEDFORWARD AND FEEDBACK NETWORKS

Perceptron networks - training rules - multilayer perceptron - back propagation algorithm - associative memories - Hopfield networks - Boltzman machine - self organizing map.

FUZZY LOGIC

Overview of classical sets - introduction to fuzzy logic - membership function - fuzzy rule generation - operations on fuzzy sets - compliment - intersections - unions - combinations of operations- fuzzy if-then rule - fuzzy inferencing - Mamdani, TSK -defuzzification.

NEURO FUZZY SYSTEM

Adaptive Neuro Fuzzy Inference Systems (ANFIS) – architecture - hybrid learning algorithm - Parameter identification-Rule base structure identification – input selection -input space partitioning – Neuro-Fuzzy control.

APPLICATIONS

Applications of neural network – pattern recognition - fuzzy logic control – inverted pendulum – image processing – home heating system – biomedical applications – applications of neuro-fuzzy system - character recognition - channel equalization-noise cancellation.

Text Books

- 1. Jang .J.S.R., Sun. C.T., E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall of India Pvt. Ltd, New Delhi,2005
- 2. Timothy J. Ross, Fuzzy Logic with Engineering Applications, Tata McGraw Hill, 1997.

- 1. Laurance Fausett, Englewood cliffs, N.J., Fundamentals of Neural Networks, Pearson Education, 1992.
- 2. Zimmermann .H.J., Fuzzy Set Theory and its Applications, Allied Publication Ltd., 1996.
- 3. John Yen and Reza Langari, Fuzzy Logic Intelligence Control and Information, Pearson Education, New Delhi, 2003

MEC315			DE	SIGN F	OR MA	NUFAC	TURE			L 3		P 0	C 3	
Prerequisite	Basic	knowle	dge in N	Techani	cal Engi	neering					-			
Objective(s)	CNC r	nachines						C 1	cial mach g systems			nec	l	
Course Outco	me(s)													
CO1	Under	stand the	e constru	ctional f	eatures o	of limitat	tion and	tolerance	es.					
CO2	Analy	ze the ut	ilization	of mater	rials cho	ice for di	ifferent r	nachine.						
CO3	Know	Known about the importance of component design and machining consideration.												
CO4	Know	Known about the importance of component design and casting consideration.												
CO5	Have	Have knowledge about redesign for manufacture												
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1	M													
CO2							M							
CO3			Н		M									
CO4		H M												
CO5	M	M H L L												
					Course	e Topics							_	

INTRODUCTION

General design - principles for manufacturability, strength and mechanical factors, mechanisms selection, evaluation method - process capability - feature tolerances - geometric tolerances - assembly limits - datum features - tolerance stacks.

FACTORS INFLUENCING FORM DESIGN

Working principle - material, manufacture, design - possible solutions - materials choice- influence of materials on form design of welded members, forgings and castings.

COMPONENT DESIGN -MACHINING CONSIDERATION

Design features to facilitate machining - drills, milling cutters, keyways - doweling procedures - counter sunk screws - reduction of machined area - simplification by separation - simplification by amalgamation - design for machinability - design for economy - design for clampability - design for accessibility - design for assembly.

COMPONENT DESIGN – CASTING CONSIDERATIONS

Redesign of castings based on parting line considerations - minimizing core requirements, machined holes, redesign of cast members to obviate cores.

REDESIGN FOR MANUFACTURE AND CASE STUDIES

Identification of uneconomical design - modifying the design - group technology - computer applications for DFMA.

Text Book

1) Harry Peck, Design for Manufacture, Pittman Publication, 1983.

- 1) Robert Matousek, Engineering Design A systematic approach, Blackie and sons Ltd., 1963.
- 2) James G. Bralla, Hand Book of Product Design for Manufacturing, McGraw Hill Co., 1986.
- 3) Swift, K.G., Knowledge based design for manufacture, Kogan Page Ltd., 1987.

MEC317				T	RIBOLO	OGY				L 3		P C 3		
Prerequisite	Funda	amentals	of math	ematics,	Enginee	ring Me	chanics a	and Fluid	l Mechan					
Objective(s)	frictio Chara sliding Interp	nal beha cterize f 3.	vior of c eatures test rese	ommonl of rough arch on r	y encour surface	ntered sli e and lic	ding inte quid lub	erfaces. ricants a	dictions and the dictions are they provided the dictions are the dictional dictions are the dictional dictions are the dictional dictions are the dictional	oertain 1	to interfa			
Course Outco	Course Outcome(s)													
CO1	To desc	To describe the basic principles and types of friction and wear												
CO2	To und	To understand the necessity of lubrication and to study the theory												
CO3	Design	and perf	ormance	analysis	s of fluid	l film bea	arings							
CO4	To eval	luate the	load, str	ess and l	ife capac	city of ro	lling ele	ment bea	arings					
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н										M		
CO2	M	M												
CO3	M		Н		Н					L				
CO4	Н		Н	Н								M		

SURFACE FRICTION AND WEAR

Topography of the surfaces - surface features - surface interaction - theory of friction - sliding and rolling friction, friction properties of metallic and non-metallic materials, friction in extreme conditions - wear- types of wear - mechanism of wear - wear resistance materials - surface treatment - surface modifications - surface coatings.

Course Topics

LUBRICATION THEORY

Lubricants-physical properties, lubricants standards, lubrication regimes - hydrodynamic lubrication - Reynolds equation - thermal, inertia and turbulent effects - elasto hydrodynamic, plasto hydrodynamic and magneto hydrodynamic lubrication - hydro static lubrication - gas lubrication.

DESIGN OF FLUID FILM BEARINGS

Design and performance analysis of thrust and journal bearings - full, partial, fixed and pivoted journal bearings design - lubricant flow and delivery - power loss, heat and temperature, rotating loads and dynamic loads in journal bearings - special bearings - hydrostatic bearing design.

ROLLING ELEMENT BEARING

Geometry and kinematics - materials and manufacturing processes - contact stresses - hertzian stress equation, - load divisions - stresses and deflection - axial loads and rotational effects - bearing life capacity.

Text Rook

1) Sahoo, Engineering Tribology, PHI, New Delhi, 2007.

- 1) Kragelsky, I.V., and Alisin, V.V., Tribology- lubrication, wear and lubrication, Professional Engineering Publishing, 2001.
- 2) Basu, S.K., Senguta, S.N., Fundamentals of Tribology, PHI, New Delhi, 2006.
- 3) Cameron, A., Basic Lubrication Theory, Ellis Herward Ltd., UK, 1981.
- 4) Hulling, J., Principles of Tribology, MacMillan, 1984.
- 5) Williams, J.A., Engineering Tribology, Oxford Univ. Press, 1995.

MEC222	MEC323		N	ATEDIA	TOMA	NACEN	/ENT			L	T	P	C
WIEC323			IVI A	ATERIA	LS MA	NAGEN	IENI			3	0	0	3
Prerequisite	basic p	production	on proces	ss and flo	ow of cas	sh			ools appli			eme	ent,
Objective(s)		miiarize edge on		rea of n	naterials	flow ins	side the	industrie	es and give	e wide	2		
Course Outco	me(s)												
CO1	mana	gement.			C		,		as of ma				
CO2		To developed the skills of knowledge acquisition of purchase management in industrial sectors.											
CO3		To plan, execute and report on store activities and also able to manage inventory by using various analysis.											
CO4	To lea	arn abou	t JIT, M	RP I, MI	RP II, ve	nder eva	luation,	etc.					
CO5													
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12
CO1	M		L					M					L
CO2	M		M		M			Н			L		
CO3	M	L	L		Н			M					
CO4	Н		L		M			M					L
CO5													

FUNCTIONS OF MATERIALS MANAGEMENT

Introduction - objectives - organizations - functions - administration - integrated approach - relationship with other department.

Course Topics

PURCHASING MANAGEMENT

Purchasing policies and procedures - legal aspects - selection of sources of supply - forms and records - methods of purchasing - capital purchasing ethics.

STORES MANAGEMENT

Store function - location - layout - materials handling and movement -stock taking-procedures and records – ABC and VED system of stock control.

INVENTORY MANAGEMENT

EOQ - inventory systems - periodic - deterministic and probabilistic models - static inventory model - reorder point - lead time analysis - safety stocks

VALUE ANALYSIS

Standardization - variety reduction - JIT - MRP I, MRP II - vender evaluation and rating - inventory audit and information systems.

Text Book

1) Lamer Lee and Donald W Dobler, Purchasing and Materials Management, Tata McGraw-Hill, New Delhi, 1996.

- 1) Gopalakrishnan, P., Purchasing and Materials Management, Tata McGraw Hill Publishing Co. Ltd. New Delhi,1996.
- 2) Gopalakrishnan, P., Handbook of Materials Management, Prentice Hall of India, New Delhi, 1996.
- 3) Starr and Miller, Inventory Control Theory and Practice, Prentice Hall of India, NewDelhi, 1989.
- 4) Ahuja, K.K., Material Management, CBS Pub., New Delhi, 1992.
- 5) Spencer B.S., Computer Based Production and Inventory Control, Prentice Hall, 2002.

- 6) Joseph S.M., Production and Operations Management, John wiley and sons, 1999.
- 7) Datta, A.K., Integrated Materials Management: A Functional Approach, Prentice Hall of India Ltd., New Delhi, 1998.

MEC327	EC327 HEAT AND MASS TRANSFER				C							
WIEC327	HEMI MIND MINDS TRANSFER	3	0	0	3							
Prerequisite	Knowledge of Thermodynamics and Fluid Mechanics											
Objective(s)	The course is intended to build up necessary background for understanding the physical behavior of various modes of heat transfer, like, conduction, convection and radiation and to understand the application of various experimental heat transfer correlations in engineering calculations, to learn the thermal analysis and sizing of heat exchangers and also to understand the basic concepts of mass transfer.											
	1											
Course Outco	urse Outcome(s)											
CO1	To understand the concept of modes of transfer (conduction, convection radiation)	o understand the concept of modes of transfer (conduction, convection and										
CO2	To identify and analyze the mechanism of heat and mass transfer correctly is occurring in a range of context.	whie	ch									
CO3	To be able to solve the problems in 1-D and 2-D steady state heat conduction plane wall, composite wall and cylinder.	tion	in									
CO4	To discuss the free and forced convection and to perform the calculations for onvection.											
CO5	To apply their knowledge and develop, test heat / mass transfer systems.	•		•	•							

Mapping of COs with POs

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M		M	Н	Н					L		
CO2	Н	Н			M				L		M	
CO3	L	Н					L				Н	
CO4	L		Н					M		L		
CO5	Н	Н	Н		M						Н	M

Course Topics

PRODUCT DESIGN PROCESS

The design process - morphology of design - design drawings - computer aided engineering - designing of standards - concurrent engineering - product life cycle - technological forecasting - market identification - competition bench marking - systems engineering - life cycle engineering - human factors in design industrial design.

CONCEPTUAL DESIGN

Creativity and problem solving - product design specifications - conceptual design - decision theory embodiment design - detail design.

MODELLING AND OPIMIZATION

Mathematical modeling - simulation - geometric modeling - finite element modeling - optimization - search methods - geometric programming - structural and shape optimization.

MATERIAL SELECTION AND DESIGN FOR ASSEMBLY

Material selection process - economics - cost Vs performance - weighted property index - value analysis role of processing and design - classification of manufacturing processes - design for manufacture - design for assembly - design for castings, forging, metal forming, machining and welding - residual stresses – fatigue.

QUALITY IN DESIGN

Total quality concept - quality assurance - statistics process control - Taguchi methods - robust design - failure model effect analysis.

Text Book

1) Dieter George, E., Engineering Design - A Materials and Processing Approach, McGraw Hill, International Edition Mechanical Engg. Series, 1991.

- 1) Karl, T., Ulrich and Steven, Product Design and Development, McGraw Hill, 2000.
- 2) Palh, G., and Beitz, W., Engineering Design, Springer Verlag, New York, 1985.
- 3) Ray, M.S., Elements of Engineering Design, Prentice Hall Inc, 1985.
- 4) Suh, N.P., The Principle of Design, Oxford University Press, New York, 1990.

MEC410 MECHANICAL BEHAVIOUR OF MATERIALS								L	T	P	C			
WIEC410		MIL	CHANI	CAL DE	СПАУІС	JUK OF	MAIL	KIALS		3	0	0	3	
Prerequisite	Fundan	nental kr	owledge	e in mate	erial scie	nce								
			_			_		_	to determ		-	-		
Objective(s)	-	-		-			crashes	, means o	of altering	g mech	anical p	cope	erties	
Objective(s)	and trea	atment o	f several	modes of	of failure	e .								
Course Outco	me(s)													
CO1	Capabl	e to unde	erstand o	f plastic	-elastic o	deformat	ion and s	stress-str	ain relatio	onship	of mater	ials	1	
CO2	Ability	to unde	erstand t	he mate	rial plas	ticity, di	slocation	ı, work	hardenin	g and	strain ha	arde	ning	
CO2	mechar	hanism.												
CO3	Able to	ble to know about testing and tensile properties of engineering materials.												
CO4						esting tec								
CO5	Acquire	e the kno	wledge	of mech	anical pr	operties	in torsio	n and to	rsional str	resses				
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1									M					
CO2					M		L							
CO3	S	S M S												
CO4		M		M										
CO5											M			

DEFORMATION

Elastic and plastic deformation -Stress-strain relationship, plastic deformation of metallic materials - Mohr's circle - Yielding criterion - Von Mises and maximum shear stress, tresca yielding criterion -Failure criteria under combined stresses

Course Topics

THEORY OF PLASTICITY

Elements of theory of plasticity - dislocation theory, properties of dislocation, stress fields around dislocations, elementary dislocation interactions - application of dislocation theory to work hardening and strengthening mechanisms.

TENSILE PROPERTIES

Engineering stress-strain curve - true stress- strain curve - instability in tension, stress distribution at the neck, ductility measurement, effect of strain rate and temperature on flow properties, testing machines - tensile properties of important materials.

HARDNESS TESTING

Introduction - Brinell, Vickers, Rock well and Meyer hardness test, analysis of indentation by an indenter - Relationship between hardness and the flow curve - micro hardness tests- hardness conversion, hardness at elevated temperatures.

TORSION

Introduction - mechanical properties in torsion, torsional stresses for large plastic strains- types of torsion failures - torsion test vs. tension test - hot torsion testing.

Text Book

1) Thomas H. Courtney, Mechanical Behavior of Materials, Waveland Pr Inc; 2nd edition, 2005.

- 1) Dieter, G. E., Mechanical Metallurgy, McGraw Hill Publications, 3rd Edition, 1988.
- 2) Suryanarayana, Testing of Metallic Materials, Prentice Hall India, New Delhi, 1979.
- 3) Rose, R.M., Shepard, L.A., Wulff, J., Structure and Properties of Materials, Volume III, John Wiley, 4th

Edition, 1984.

4) Honeycombe, R.W.K., Plastic Deformation of Materials, Edward Arnold Publishers, 1984.

MEC421		NON-DESTRUCTIVE EXAMINATION								L	T	P	C
D	ъ :	1 1		1 .	1	,		. ,.	1.1.0	3	0	0	3
Prerequisite									and defe				
									a wide varing and i			ce	You
Objective(s)									oly it, who				
			chnique'					whi whi	19 10, 1111	•11 0110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Course Outco			1										
CO1	To ide	ntify the	errors in	the tech	nnical ba	ckgroun	d.						
CO2	To exa	amine th	e cracks,	surface	damages	s in the c	ompone	nts.					
CO3	To exa	amine th	e defects	using X	- ray sou	ırce.							
CO4	To ana	o analyze the defectors without causing any environmental effects.											
CO5	To cat	egorize	the latest	trends a	ınd equip	ments in	n NDT.						
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	I	PO12
CO1	M		L		L								
CO2	M		Н										
CO3	L	L H H											
CO4	M		L										
CO5	M		M		M								

PLANT LAYOUT AND MATERIALS HANDLING

Plant location, - classification of layout – layout design procedures - CRAFT, ALDEP, CORELAP - materials handling systems – principles - classification of materials handing equipments - production and operation decisions.

Course Topics

PRODUCTIVITY MANAGEMENT AND WORK STUDY

Introduction, productivity models, organizational transformation, re-engineering, process improvement models, reengineering tools and implementation, reverse engineering - work study - time study - method study - tools – methods.

RELIABILITY ENGINEERING

Reliability concept - reliability data analysis - prediction models - reliability management - risk assessment.

ERGONOMICS OF MANUFACTURING

Introduction - human performance - work space design - design of equipments - design of environment.

PROJECT MANAGEMENT

Phases of project management – network constructions – CPM – PERT – crashing – resource leveling - resource allocation.

Text Book

- 1) ILO, Introduction to work study, Geneva, 1974.
- 2) Richard Francis L. and John A. White, Facilities layout and location an analytical approach, Prentice Hall Inc, 1984.

- 1) Barnes, raeph.M, Motion and time study -design and measurement work, John wiley, Newyork, 1990
- 2) Khanna, O.P., Industrial Engineering and Management, Dhanpatrai Publication, 2004.
- 3) Gopalakrishnan, P., and Banerji, A.K., Maintenance and Spare Parts Management, Prentice Hall Of India, New Delhi, 1991.
- 4) Edosomwan, J.A., Organisational Transformation and Process Re-engineering, British Library Cataloging In Pub. Data, 1996.
- 5) Rastogi, P.N., Re-Engineering and Re-Inventing the Enterprise, Wheeler Publications, New Delhi, 1995.

- 6) Fiegenbarum, A.V., Total Quality Control, Mcgraw-Hill, Inc., 1991.
- 7) Modarres, Reliability and Risk Analysis, Maral Dekker Inc., 1993.
- 8) James Apple, M., Plant Layout and Material Handling, John Wiley, 1977.
- 9) Lee J Krajewski, Larry P Ritaman, Operations Managements, Addison-Wesley, 2000.
- 10) Prasannachandra, Project management, Tata Mcgraw Hill, 1986.

MEC424		IND	LICTDI	AT ATIT	OMAT		n dob	OTICS		L	T	P C		
MEC424		עווו	USIKIA	AL AU I	UNIAT	ION AN	D KUD	ones		3	0	0 3		
Prerequisite	used	in auto	mated	producti		roboti	ic syste	ems. Va	problems arious cor					
Objective(s)		ence and							o apply p ated to i			ation		
Course Outco	me(s)													
CO1	To kno	To know about the production concept & strategies of automation.												
CO2	To desc	Γο describe the CIM architecture & FMS.												
CO3		Γο analyze the details flow lines & line balancing methods.												
CO4	To sele	ect the m	echanica	al handli	ng systei	ns & inj	ections r	nethods.						
CO5	To man	ipulate t	he robot	structure	e & appli	ication in	n industr	ies.						
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M				Н			Н						
CO2	L				L			M						
CO3	Н				M			M						
CO4	M				Н			M						
CO5	Н				M			Н						

INTRODUCTION TO AUTOMATION

Classification of Manufacturing Industries – Types of Production – Functions in Manufacturing – Organization and Information processing in Manufacturing – production concepts and mathematical models – concepts, definition, objective, arguments

Course Topics

and strategies of automation.

CIM AND FMS

Nature role and development of CIM Architecture- computers in CIM-simulation software - Group technology-part families-parts classification and coding-Production Flow analysis-cellular manufacturing cell design-benefits MRP I and II -computer aided quality control.

Definitions – classifications – flexibility – typical configurations – computer control systems – planning the FMS – analysis methods for flexible manufacturing systems – applications and benefits.

AUTOMATED FLOW LINES AND ASSEMBLY SYSTEMS

General terminology – analysis of transfer lines with and without storage buffers – partial automation – computer simulation of automated flow lines – assembly systems and line balancing – methods of line balancing – computerized line balancing methods.

AUTOMATED MATERIALS HANDLING AND STORAGE SYSTEMS

Functions – types of equipment, analysis and design of conveyor systems and automated guided vehicle systems, automated storage/retrieval systems, carousel storage systems, work-inprogress storage, interfacing handling and storage with manufacturing - Inspection - Principles and methods – sensor technologies – coordinate measuring machines, contact and noncontact inspection methods – machine vision.

INDUSTRIAL ROBOTICS

Robot definition and types – Robot anatomy - Mobile Robot and its advantages – Case studies – pick and place robot –

automatic camera – washing machine – Application of robots in industries.

Text Books

1) Mikell. P. Groover, Automation Production Systems, and Computer Integrated Manufacturing, Prentice Hall of India Ltd., New Delhi, 1998.

References

- 1) D. M. Considine and G. D. Considine, Standard Hand Book of Industrial Automation, Chapman and Hall, NJ, 1986.
- 2) Radhakrishnan and S. Subramaniyan, CAD/CAM/CIM, New Age International (P) Limited, New Delhi, 1998.
- 3) Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill, New Delhi, (1994).

FREE ELECTIVES

FREE ELECTIVES (BASIC SCIENCE AND MATHEMATICS)

		Cre	dits										
BPY503 NON-LINEAR OPTICS	L	T	P	Total									
	4	1	0	4									
Course Category: Free Electives (Basic Science And Mathematics)		Course Category: Free Electives (Basic Science And Mathematics)											

Course Objective(s)

This paper deals with physics of non-linearity and their applications.

Course Outcome (s)

CO1: At the end of the course, students should be able to:

Get the basic ideas on information in light.

CO2: Get the basic ideas on the electromagnetic phenomena Acquire the knowledge on photophysical phenomena

CO4: Find out the applications in non linear optics

CO5: Get the ideas on Fiber optics

Course Topics

Unit 1 Information in Light

Semiconductors for optoelectronics - Optoelectronic semiconductor devices - Bright light from cool solids - Seeing The Light- The human eye - Color vision - Color blindness - Polarization sensitivity - Speed of response - Optical illusions - Contemporary Optics- Waveguides - Optical fibres - Optical amplification - Conveying sound by light - The long and the short of optical communication.

Unit 2 Fundamental Tools

Electromagnetic Phenomena - Gauss' Law - Gauss Law For Magnetic Fields - Faraday's Law - Ampere's Law - Maxwell's Adjustment To Ampere's Law - Polarization of Materials - Plane Wave Solutions To The Wave Equation - Complex Plane Waves - Real And Complex Indices of Refraction - The Lorentz Model of Dielectrics - Poynting's Theorem - Irradiance of A Plane Wave - Energy Density of Electric And Magnetic Fields.

Unit 3 Photophysical Phenomena

Optical Propagation in Media - Diffraction and Dispersion effects - Wave Propagation in Homogeneous Linear Isotropic Media - Anisotropic media - The Origin and Modeling of Optical Nonlinearity - A Simple Physical Model for Optical Nonlinearity - Physical Effects of Nonlinear Polarization - Mathematical Modeling of Optical Nonlinearities - An Alternative Approach For Reflection And Refraction:-Refraction at an Interface - The Fresnel Coefficients' - Reflectance - Transmittance - Double-Interface Problem Solved Using Fresnel Coefficients' - Beyond Critical Angle: Tunneling of Evanescent Waves - Multiple Interfaces - Multilayer Coatings.

Unit 4 Physics of Non-Linearities

The Physics of Second Harmonic Generation - SHG in Crystals - Frequency Doubling and

Mixing - Optical Parametric Generation Amplification - Oscillation - Mathematical Formulation - Phase Matching in Anisotropic Crystal - Nonlinear Transverse Effects in Second Harmonic Generation - Self-Refraction of Optical/Gaussian Beams - Optical Bistability phenomena - Optical Phase conjugation effects.

Optical Communication Today

Components - Fabrication And Materials - Light Sources - Coupling- Micro Components Tapers - Splices/Connectors - Characteristics of optical fibers - Diameter Control And Measurement - Attenuation - NLO Properties In Media - Fiber-Optic Solitons - Magnetic Solitons - Optical Shocks And Self-Steepening Of Pulses - Two-Wave Mixing In Photorefractive Materials - Four-Wave Mixing And Phase Conjugation In Photorefractive Materials - Self-Phase Conjugation And Edge Enhancement - Non-Linearities In Nematic Liquid Crystals - Photonic Bandgap Structures

Text Books

1. Richard L Sutherland, *Handbook of Nonlinear Optics*, 2nd Edition (Revised and Expanded), Marcel Dekker, Inc, 2003.

2. Newell, Alan C., and Jerome V. Moloney, Nonlinear optics, Addison-Wesley, 1992.

- 1. Justin Peatross and Michael Ware, Physics of Light and Optics, 2013.
- 2. David A. Boas, Constantinos Pitris and Nimmi Ramanujam, *Handbook of Biomedical Optics*, CRC Press, Taylor and Francis Group, 2011.
- 3. David Greene, Light and Dark Institute of Physics Publishing Ltd, 2003.
- 4. Goure P and Verrier I, *Optical Fibre Devices Series in Optics and Optoelectronics*, Institute of Physics Publishing Ltd, 2002.

BMA331 COMBINATORICS

Credits				
L	T	P	Total	
3	0	0	3	

Course Category: Free Electives (Basic Science And Mathematics)

Course Objective(s)

This paper deals with physics of non-linearity and their applications.

Course Outcome (s)

CO1: At the end of the course, students should be able to:

Get the basic ideas on information in light.

CO2: Get the basic ideas on the electromagnetic phenomena

CO3: Acquire the knowledge on photophysical phenomena Find out the applications in non linear optics

CO5: Get the ideas on Fiber optics

Course Topics

Unit I Basic Combinatorial Numbers – Stirling Numbers of the First Kind – Stirling Numbers of the Second Kind.

Unit II Generating Functions and Recurrence Relations – Symmetric Functions.

Unit III Multinomials – Multinomial Theorem – Inclusion and Exclusion Principle.

Unit IV Euler Function – Permutations with Forbidden Positions – The 'Menage' Problem – Problem of Fibonacci.

Unit V Polya Theory – Necklace Problem and Burnside's Lemma – Cycle Index of a Permutation Group – Polya's theorems and their Immediate Applications.

Text Book:

1. Kenneth P. Boggart, Introductory Combinatorics, Pitman Books Ltd, 1983.

- 1. V. Krishnamurthy, Combinatorics Theory and Applications, East –West Press, 1989.
- 2. V.K. Balakrishnan, Theory and Problems of combinatorics, Schaums outline series McGraw Hill, 1994
- 3. Ian Anderson, Combinatorics of finite sets, Oxford Science Publication, 2011.

BMA332 MATHEMATICAL MODELLING

Credits				
L	T	P	Total	
3	0	0	3	

Course Category: Free Electives (Basic Science And Mathematics)

Course Objective(s)

This paper deals with physics of non-linearity and their applications.

Course Outcome (s)

CO1: At the end of the course, students should be able to:

Get the basic ideas on information in light.

CO2: Get the basic ideas on the electromagnetic phenomena Acquire the knowledge on photophysical phenomena

CO4: Find out the applications in non linear optics

CO5: Get the ideas on Fiber optics

Course Topics

UNIT I

Mathematical Modeling through Ordinary Differential Equations of First order: Linear Growth and Decay Models – Non-Linear Growth and Decay Models – Compartment Models – Dynamic problems – Geometrical problems.

UNIT II

Mathematical Modeling through Systems of Ordinary Differential Equations of First Order: Population Dynamics – Epidemics – Compartment Models – Economics – Medicine, Arms Race, Battles and International Trade – Dynamics.

UNIT III

Mathematical Modeling through Ordinary Differential Equations of Second Order: Planetary Motions – Circular Motion and Motion of Satellites – Mathematical Modeling through Linear Differential Equations of Second Order – Miscellaneous Mathematical Models.

UNIT IV

Mathematical Modeling through Difference Equations: Simple Models – Basic Theory of Linear Difference Equations with Constant Coefficients – Economics and Finance – Population Dynamics and Genetics – Probability Theory.

UNIT V

Mathematical Modeling through Graphs: Solutions that can be Modelled Through Graphs – Mathematical Modeling in Terms of Directed Graphs, Signed Graphs, Weighted Digraphs and Unoriented Graphs.

Text Book:

1. Mathematical Modeling, J.N. Kapur, Wiley Eastern Limited, New Delhi, 1988.

Reference:

J.N. Kapur, Mathematical Models in biology and Medicine, EWP, New Delhi, 1985.

BCY501	NANO CHEMISTRY	L	T	P	С
		3	0	0	3
Objective(s)	Educate them in synthesis and characterization of nano materials				

CO1 CO2	Summarize the basis of nano technology Compare the properties of nanomaterials with micro and macro materials
CO3	Sketch the synthesis of nanomaterials
CO ₄	Illustrate the synthesis techniques of nanomaterials
CO ₅	Choose best technologies for characterization of nanomaterials

Unit-I: Basics of Nano chemistry

Basics of nanomaterials: Properties of nanomaterials, quantum confinement effect, surface to volume ratio, surface properties of nanoparticles. Classification of the nano materials – zero dimensional, one dimensional, two dimensional and three dimensional nanostructures.

Unit-II: Properties of Nanomaterials

Mechanical, optical, electronic, magnetic, thermal and chemical properties of nanomaterials. Size dependent properties-size dependent absorption spectra

Unit-III: Synthetic Techniques

Chemical methods: sol-gel synthesis, solvothermal synthesis, thermolysis route. Physical methods: Pulsed laser deposition- Magnetron sputtering

Unit-IV: Applications of Nanomaterials

Catalysis on nanoparticles, semiconductors, sensors, and electronic devices, photochemistry and nanophotonics, applications of CNTs, nanomaterials in biology and medicine.

Unit-V: Characterization Techniques

X-ray diffraction- Electron microscopes – scanning electron microscopes (SEM) – transmission electron microscopes (TEM) – scanning probe microscopy – atomic force microscopy (AFM) – scanning tunneling electron microscope (STEM) – basic principles only.

- 1. S.Shanmugam, Nanotechnology, MJP Publishers, Chennai (2010).
- 2. Patrick Salomon, A Handbook on Nanochemistry, Dominant Publishers and Distributers, New Delhi.
- 3. S. Balaji, Nanobiotechnology, MJP Publishers, Chennai (2010).
- 4. CNR Rao The Chemistry of Nanomaterial: Synthesis, Properties and Applications, Vol. I and II, Springer (2006).
- 5. Nanotechnology: Basic Science and Emerging Technologies, Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse, Overseas Press, (2005).
- 6. G. B. Segreev, Nanochemistry, Elsevier, Science, New York, (2006).
- 7. C. N. R. Rao, A. Mu"ller, A. K. Cheetham, "The Chemistry of Nanomaterials: Synthesis, Properties and Applications" WILEY-VCH Verlag GmbH & Co. KGaA, weinheim, 2004
- 8. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, Nanocrystals: Synthesis, Properties and Applications" Springer Series in materials science-95, Springer-Verlag Berlin Heidelberg 2007
- 9. Znong Lin Wang, "Characterization of nanophase materials" WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000.

DCN/504	APPLIED CHEMISTRY	L	T	P	С
BCY504		3	0	0	3
Objective(s)	Awareness about recent technologies in applied chemistry				

CO1	Solve water related problems
CO ₂	Illustrate electrochemical concepts
CO3	Employ corrosion prevention methodologies
CO4	Develop innovative fuels
CO ₅	Formulate novel polymers

Unit-I: Water Treatment

Brief introduction regarding sources, impurities in water. Hardness of water, types, determination of hardness using EDTA method. Brief discussion and chemistry involved in the process of sedimentation, coagulation, filtration and sterilization, UV, Ozone, chlorination including break point chlorination. Softening of Water: (i) Lime-soda, process: Principles in hot, cold, lime-soda process. (ii) Zeolite softener, demineralization by synthetic ion exchange resins, Comparison between lime-soda, Zeolite and ion exchange process.

Unit-II: Electrochemistry

Introduction, Arrhenius ionic theory, Debye-Huckel theory of strong electrolytes, Activity and Activity coefficient, Conductivity of electrolytes, Kohlrausch's law of independent migration of ions, Oswald's dilution law, Acids and Bases, Concept of pH and pOH, Buffer solutions, Solubility product, common ion effect, Hydrolysis of salts, Conductometric titrations, transport number. Potentiometric titrations.

Unit-III: Corrosion of Metals and Allovs

Definition and classification of corrosion. Electrochemical corrosion- General revision of concept of electrode potential, galvanic cells, electrochemical and galvanic series, causes of corrosion, mechanism of direct chemical attack, pilling- Bed worth rule, concentration cells. Differential aeration theory of corrosion, types of corrosion, pitting corrosion, intergranular stress, waterline and microbial corrosion. Corrosion prevention: (a) Design and material selection, (b) Anodic and Cathodic inhibitors, (c) Cathodic and Anodic protection, (d) Protective coatings- types of surface, coatings and its application.

Unit-IV: Fuels

Introduction, Classification of fuels, Calorific value, Characteristics of a good fuel, comparison between solid, liquid and gaseous fuels. Bomb calorimeter. Calorific value of a gaseous fuel, Theoretical calculation of calorific value of a fuel, Wood, Coal, Classification of coal, selection of coal, analysis of coal, Types of carbonization of coal. Diesel engine fuel, Petroleum, synthetic petrol. LPG as a fuel. Non petroleum fuels, Natural gas, Coal gas, water gas. Non conventional sources of energy-bio mass, biogas, wind energy, solar.

Unit-V: Polymers

Introduction, Nomenclature and functionality of polymers, Classification of polymers, Types of polymersation. Methods of polymerization, Characteristics of polymers, structure and properties of polymers. Plastics, Inorganic polymers, Silicones, Rubbers, vulcanization of rubbers, synthetic rubber or elastomers, Application of rubber, Conducting polymers and bio polymers.

- 1. S.S. Dara, A Text Book of Engineering Chemistry, S.Chand & Co. New Delhi, first Edition, 1985.
- 2. P.C.Jain and Monika Jain, Engineering Chemistry, Dhanpat Rai & Sons, New Delhi, Fifteenth Edition, 2009.
- 3. Fontana and Green, Corrosion Engineering, Tata McGraw Hill International Book Co. 2nd edition, 2005.
- 4. V.R.Gowariker, N.V.Viswanathan, Jayadev sreedhar, Polymer Science, New Age International publishers, (1986) Reprint 2010.

RCV505	BCY505 INSTRUMENTAL METHODS OF ANALYSIS	L	T	P	С
DC 1 303		3	0	0	3
Objective(s)	Educate them in operating analytical instruments				

CO1	Summarize chromatographic techniques
CO2	Interpret spectroscopic data
CO3	Compute the spectral results
CO4	Employ gas chromatography in separating mixture of compounds
CO5	Identification of elements using microscopic analysis

Unit-I: Chromatography

Introduction – solvent extraction (basic concepts only) – ion exchange (basic concepts only) – electrophoresis (basic concepts only) – column and thin layer chromatography - Principles, instrumentation, theory and applications of GC and HPLC.

Unit-II: Qualitative Optical Spectroscopy

Introduction-Principles, instrumentation, theory and applications of Infrared spectroscopy, Raman spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray diffraction methods.

Unit-III: Quantitative Optical Spectroscopy

Introduction - Principles, instrumentation, theory and applications of Atomic absorption spectroscopy(AAS)—Inductively coupled plasma atomic emission spectroscopy- Inductively coupled plasma mass spectrometry - Atomic fluorescence spectroscopy-

X-ray fluorescence spectroscopy – Ultraviolet (UV)-visible spectroscopy.

Unit-IV: Mass Spectrometry

Introduction-Principles, instrumentation, theory and applications of Gas chromatography mass spectrometry (GCMS) – High performance liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) – Laser mass spectrometry (MALDI).

Unit-V: Microscopic and Surface Analysis

Introduction-Principles, instrumentation, theory and applications of Atomic force microscopy (AFM)–Auger electron spectroscopy-X-ray photoelectron spectroscopy (XPS)- Scanning electron microscopy (SEM)–Transmission electron microscopy (TEM).

- 1. Frank A.Settle (Editor), Handbook of instrumental techniques for analytical chemistry, Prentice-Hall Inc., New Jersey, 1997.
- 2. Vogel's Textbook of quantitative chemical analysis, G.H.Jefferey, J Bassett, J Mendham, and R C Denney, Longman scientific and technical publishers, London
- 3. D.A.Skoog, F.J.Holler, S.R.Crouch, Instrumental Analysis, Cengage Learning, New Delhi, 2007.
- 4. H.H. Willard, L.L.Merritt, and J.A.Dean, Instrumental Methods of Analysis, 6th Edition (1986), CBS Publishers & Distributors, Shahdara, Delhi.

BCY506	ENVIRONMENTAL CHEMISTRY	L	T	P	С
DC 1300		3	0	0	3
Objective(s)	Demonstrate the analysis of environmental degradation				

CO1	Examine various water quality parameters
CO ₂	Model instrumental methods of water analysis
CO ₃	Identify gaseous pollutants and its effects
CO ₄	Point out degradation of atmosphere by electromagnetic radiation
CO ₅	Categorize various soil pollutants

Course Topics

Unit-I: Environmental Chemistry of Water

The principles and application of aqueous chemistry to the environmental systems. Unique properties of water, Water Quality Parameters: physico-chemical, biological, bacteriological; Water Quality Criteria and Standards; Water quality monitoring and management aspects, Chemical methods involved in treating water and wastewater, Removal of dissolved organics and inorganics, Heavy metal pollution and its abatement.

Unit-II: Water and Wastewater Analysis

Basic concepts and Instrumental methods of analysis; Determination of major parameters of water such as pH, acidity, alkalinity, hardness, BOD, COD, solids, fluoride, nitrogen, iron, manganese, sulphate, phosphate, volatile acids and trace contaminants.

Unit-III: Atmospheric Chemistry

Structure and properties of atmosphere, Classification and chemistry of major air pollutants and their control. Types and sources of air pollution-natural, Combustion and other combustion sources.

Atmospheric Composition & Behaviour: Gaseous & particulate constituents of the atmosphere, Temperature and pressure profile of atmosphere, General circulation of atmosphere.

Unit-IV: Atmospheric Photochemistry

Electromagnetic radiations, Kinetics of thermal and photochemical processes, Reactions in the upper atmosphere, Photo processes in the troposphere, Photochemical smog, Photosynthesis, Ozone chemistry.

Unit-V: Soil Chemistry

The nature and importance of soil; Soil in the natural and man-made environment, Soil properties; Acid-Base and Ion-exchange reactions in soils. Macro and Micronutrients; Fertilisers and other soil amendments. Waste and pollutants in soil, Heavy metals and radio-nuclides in soil. Colloidal chemistry of inorganic constituents, clays, OM and soil humus; Absorption in soils - forces and isotherms; Soil as cation and anion exchanger; Degradation of natural substances; Remediation of metal contaminated soil.

- 1. T.G. Spiro and W.M.Stigliani, Chemistry of the Environment, 2nd ed., Tsinghua University Press, 2003.
- 2. V.Snoeyink and D.Jenkins, Water Chemistry, J.Wiley and Sons, 1980.
- 3. Shugui Dai, Environmental Chemistry, (ed.), Higher Education Press, 1997.
- 4. C.N. Sawyer, P.L. McCarty, G. F. Parkin, Chemistry for Environmental Engineering, McGraw Hill, 4th edition, 2002.
- 5. L.D. Bene_eld, J. F. Judkins and B. L. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice Hall, 1982.
- 6. R.A. Bailey, H. M. Clark, J. P. Ferris, S. Krause, R. L. Strong, Chemistry of the Environment, Academic Press Second Edition, 2002.

BPY502	LASER PHYSICS	L	T	P	С
DF 1502		3	0	0	3
Objective(s)	Demonstrate the analysis of environmental degradation				

CO1	Examine various water quality parameters
CO ₂	Model instrumental methods of water analysis
CO3	Identify gaseous pollutants and its effects
CO ₄	Point out degradation of atmosphere by electromagnetic radiation
CO ₅	Categorize various soil pollutants

Course Topics

Unit 1 - Fundamentals of LASER

Spontaneous emission – stimulated emission – meta stable state – Population inversion – pumping – Laser Characteristics

Unit 2 - Production of LASER

Helium – Neon Laser – Ruby Laser – CO2 Laser – Semiconductor Laser

Unit 3 - Industrial Applications of LASER

Laser cutting – welding – drilling – Hologram – Recording and reconstruction of hologram

Unit 4 - Lasers in Medicine:

Lasers in Surgery – Lasers in ophthalmology – Lasers in cancertreatment

Unit 5 - Lasers in Communication

Optic fibre communication- Total internal reflection – Block diagram of fibre optic communication system – Advantages of fibre optic communication

Text Books

- 1. Laser fundamentals William T. Silfvast Cambridge University Press Published in South Asia by foundation books, 23, Ansari Road, New Delhi, 2008
- 2. An introduction to LASERS N. Avadhanulu, S. Chand & Company, 2001.

- 1. LASER Theory and Application K. Thyagarajan and A.K. Ghatak, Mac millan, India Ltd., 1981.
- 2. Lasers and non-linear optics, B. B. Laud, New Age International (P) Ltd., IIIrd Edn., 2011

BPY504	RADIATION PHYSICS	L	T	P	С
D1 1304	RADIATION PHISICS		0	0	3
Objective(s)	This paper deals with the detailed theoretical and experimental cophysics.	ncepts	on rac	diation	1

Course	Outcome((s)
--------	----------	------------

urse Outcome(s)	
CO1	At the end of the course, students should be able to:
	Gain knowledge on the concepts of radiation
CO2	Get the basic ideas on the x-rays
CO3	Acquire the knowledge on radiation therapy
CO4	Get the knowledge on instrumentation techniques in radiation therapy
CO5	Gain the knowledge on clinical radiation therapy

Course Topics

STRUCTURE OF MATTER, NUCLEAR TRANSFORMATION AND X-RAYS

Elementary particles - Electromagnetic radiation-wave model and quantum model. Nuclear Transformation - Nuclear transformation-radioactivity - Decay constant - Activity - Radioactive series - Radioactive equilibrium - Activation of nuclides. X-Rays-Production of X-rays - X-ray tube - X-ray circuit - voltage rectification - Physics of X-ray production - X-ray energy spectra - Operating characteristics.

Clinical Radiation Generators

Kilo-voltage units- Grenz-ray therapy - Contact therapy - Superficial therapy - Orthovoltage therapy or deep therapy - Super voltage therapy - Resonant transformer units - Megavoltage therapy - Van de graff generator - Linear accelerator - Betatron - Cyclotron - Microtron - Machines using radionuclides-Cobalt-60 unit - Heavy particle beams.

Ionizing Radiation, Quality of X-Ray Beams, Measurement of Absorbed Dose

Ionizing Radiation - Interaction of ionizing radiation-Ionization - Photon beam description - Photon beam attenuation - Attenuation coefficient - Energy transfer - energy absorption coefficient - Interaction of photons with matter - Coherent scattering - The Roentgen - Free air ionization chamber - String electrometer - Ion collection-Saturation and collection efficiency - Measurement of exposure. Quality of X-Ray Beams- Half value layer and its measurement - Peak voltage-Direct indirect measurement - Effective energy. measurement of Absorbed Dose- Radiation absorbed dose - Relation between Kerma - Exposure - Absorbed dose.

Classical Radiation Therapy

Dose distribution and scatter analysis-Phantoms - Depth dose distribution - percentage depth dose-Dependence on beam quality and depth - Tissue air ratio (TAR)-relationship between TAR and percent depth dose-Dose calculation parameters- Collimator Scatter Factor - Phantom Scatter Factor - Tissue-Phantom and Tissue-Maximum Ratios - Scatter-Maximum Ratio- Practical Applications - Accelerator Calculations- SSD Technique - Cobalt 60 Calculations. Treatment planning-Acquisition of Patient Data- Internal Structures- Computed Tomography - Magnetic Resonance Imaging-Ultrasound. Skin Dose. Electron beam therapy - Brachytherapy.

Iodern Radiation Therapy, Dosimetry and Radiation Protection

Modern Radiation Therapy-Image-Guided Radiation Therapy - Proton Beam Therapy. Dosimetry-Dosimeter - Film badge dosimeter - Pocket dosimeter. Radiation Protection-Radiation Protection - Dose Equivalent - Effective Dose Equivalent - Background Radiation - Low-Level Radiation Effects - Effective Dose-Equivalent Limits- Occupational and Public Dose Limits.

Text Books

- 1. Meredith W.J. and J.B. Massey, *Fundamental Physics of Radiology*, A. John Wright and Sons Ltd.,3rd Edition, 1983.
- 2. William.R.Hendee, Geoffery.S.Ibbott and Eric.G.Hendee, *Radiation Therapy Physics*, A.John Wiley and Sons.,Inc, 3rd Edition, 2005.

- 1. Smith F.A., A Primer in Applied Radiation Physics, World scientific publishing Co., 2000.
- 2. Podgarsak E.B., Radiation Physics for Medical Physicists, Springer, 2006.
- 3. Evans R. D., Atomic Nucleus, Textbook Publications, 2003.
- 4. Fiaz.M.Khan, *The Physics of Radiation Therapy*, Lippincott Williams and Wilkins, 4th Edition, 2010.

BPY506	NUCLEAR PHYSICS	L	T	P	С
D1 1300	NOCLEARTHISICS	3	0	0	3
Objective(s)	This paper deals with the detailed theoretical and experimental co and elementary particles	ncepts	on rac	lioact	ivity

CO1	At the end of the course, students should be able to:
COI	Gain knowledge on nucleus and nuclear models.
CO2	Get the basic ideas on the nuclear reactions
CO3	Acquire the knowledge on fundamentals in elementary particles
CO4	Carry out research in nuclear physics
CO5	Acquire the knowledge on Radioactive materials

Course Topics

Nucleus and nuclear models

Introduction to nucleus- classification of nuclei – general properties of nucleus – charge, mass, spin , magnetic moment, quadruple moment – mass defect - binding energy- models of nuclear structure - liquid drop model – shell model.

Radioactivity

Introduction – discovery of radioactivity - natural radioactivity - alpha, beta and gamma rays - properties of the rays - experimental measurement of the range of alpha particles – beta ray spectra – origin of the line and continuous spectrum – the neutrino theory of beta decay.

Nuclear Reactions

Soddy Fajan's displacement law - law of radioactive disintegration - the mean life - measurements of decay constants - units of radioactivity - law of successive disintegration - radioactive dating -nuclear reactions - energy balance in nuclear reactions - threshold energy of an endoergic reaction- applications of radio isotopes.

Particle accelerators, detectors, Cosmic rays

GM Counter - Wilson cloud chamber - bubble chamber - cyclotron - synchrotron -synchrocyclotron - betatron - Cosmic rays: introduction - discovery of cosmic rays -cosmic showers -origin of cosmic radiation.

Elementary particles

Introduction – fundamental interactions - elementary particle quantum numbers – quark model.

Text Book

1. Modern Physics by R. Murugesan and Kiruthiga Sivaprasath, S.Chand & Co., 2005.

- 1. Atomic and Nuclear Physics by Shatendra Sharma, Dorling Kindersley India, 2005.
- 2. Nuclear Physics by D.C. Tayal, Himalaya Publishing House, reprint 2007.
- 3. Nuclear Physics, An introduction by S.B.Patel, New Age international(P) Ltd., (reprint 2003)

BPY507	SPACE PHYSICS	L	T	P	С
D1 1307	STACE THISICS	3	0	0	3
Objective(s)	This paper deals with the detailed concepts on space science.				

CO1	At the end of the course, students should be able to:
COI	Know about the earth's atmosphere.
CO2	Get the basic ideas on the interplanetary medium
CO3	Acquire the knowledge on planets
CO4	Carry out the research work on space physics
CO5	Acquire the knowledge on sun atmosphere

A 4 4 1 1 C 4 1

Course Topics

Unit I - The Earth's Upper Atmosphere

Variations of atmospheric densities and temperature. Formation and structure of Ionosphere. Studies of ionosphere by ground based and space techniques. The radiation belts. Auroras. Lyman glow of the night sky. The geo-corona and airglow studies.

Unit I - Sun

Structure of solar atmosphere. Solar convection and differential rotation. Large scale and small scale magnetic fields. Solar granulation and super granulation. Sunspots. Solar flares.

Unit III - Interplanetary Medium

Xray and g-ray studies of sun. Solar X-ray and radio bursts. Solar wind. Interaction with planetary atmosphere. Structure of bow shocks. Magnetosphere. Ring Current. Radiation belts and interplanetary magnetic field.

Unit - IV Moon

Origin of Moon. Solar and Lunar eclipses. Lunar ranging experiments. Studies of lunar surface from various space missions and their results. Satellites of other planets of the solar system.

Unit - V Planets

Infrared spectroscopy of planetary atmospheres. Principal results of the Mariner, Venera and Viking Space Missions to Mars and Venus. Voyager space mission studies of outer planets and their satellites and rings. Comparative studies of planetary atmospheres. Planetary ionospheres. Extra-solar system planets.

Text Books

- 1. Sun, Earth and radio: An Introduction to the Ionosphere and Magnetosphere, J.A.Ratcliffe, 1970, Littlehampton Book Services Ltd
- 2. An Intoduction to Planetary Physics: The Terrestrial Plants, Kaula. W.M, 1969, John Wiley & Sons Inc.
- 3. Harold Zirin: Astrophysics of the Sun, 1988, Cambridge University Press

- 1. W.N.Hess and G.Mead(Ed): Introduction to Space Science, 1965, Gorden and Breach,
- 2. V.Bumba and Kleczek, Basic Mechanism of Solar Activity, 1976.
- 3. W. J. Kaufmann, Exploration of the Solar System, Mac Millan, 1978, New york.

	_									L	T 1	
HSS001	7	ΓΟΤΑL	QUALI	TY MA	NAGEN	1ENT				3	0 (3
Prerequisite		of ethic										
Objective(s)	To impart knowledge on the quality management process and key quality management activities. Comprehend the concepts of customer's value. To understand the quality management philosophies by various quality gurus. Compare and contrast the various tools used in quality management and to apply it. Discuss the emerging tendencies toward global competitiveness, understand different perspectives on quality.											
Course Outco	me(s)											
CO1		Determine the impact of quality on profitability and to learn the basic principles and practices of TQM.										
CO2	Devel	op an un	derstand	ing on q	uality ma	anageme	nt philos	sophies a	nd frame	work.		
CO3		op in-dej gement	oth know	ledge in	various	tools an	d technic	ques of q	uality			
CO4	Comn	nunicate	the impo	ortance o	f custom	er focus	ed in TQ	M.				
CO5	TQM	and bend			lass statu	ıs in mar	nufacturi	ng and se	ervice thre	ough		
Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M					M				M		
CO2		M					M	M	M		Н	M
CO3	M				Н		L	M				L
CO4						L	M	M		Н	M	M
CO5						M			M	M	Н	L
					Course	Topic(s)					

INTRODUCTION TO QUALITY MANAGEMENT

Definitions – TOM framework, benefits, awareness and obstacles. Quality – vision, mission and policy statements. Customer Focus – customer perception of quality, Translating needs into requirements, customer retention. Dimensions of product and service quality. Cost of quality. **PRINCIPLES AND**

PHILOSOPHIES OF QUALITY MANAGEMENT

Overview of the contributions of Deming, Juran Crosby, Masaaki Imai, Feigenbaum, Ishikawa, Taguchi, Shingeo and Walter Shewhart. Concepts of Quality circle, Japanese 5S principles and 8D methodology.

STATISTICAL PROCESS CONTROL AND PROCESS CAPABILITY

Meaning and significance of statistical process control (SPC) – construction of control charts for variables and attributed. Process capability – meaning, significance and measurement – Six sigma concepts of process capability. Reliability concepts – definitions, reliability in series and parallel, product life characteristics curve. Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Quality functions development (QFD) – Benefits, Voice of customer, information organization, House of quality (HOQ), building a HOQ, QFD process. Failure mode effect analysis (FMEA) – requirements of reliability, failure rate, FMEA stages, design, process and documentation. **TAGUCHI**

TECHNIQUES

Taguchi techniques – introduction, loss function, parameter and tolerance design, signal to noise ratio. Seven old (statistical) tools. Seven new management tools. Bench marking and POKA YOKE.

REFERENCES:

1. Dale H.Besterfield et al, Total Quality Management, Thrid edition, Pearson Education (First Indian Reprints 2004).

- 2. ShridharaBhat K, Total Quality Management Text and Cases, Himalaya Publishing House, First Edition 2002.
- William J.Kolarii, Creating quality, Mcgraw Hill, 1995
 PoornimaM.Charantimath., Total quality management, Pearson Education, First Indian Reprint 2003

										L	T I	C	
HSS002		ENGI	NEERIN	NG MAN	NAGEM	ENT				3	0 (3	
Prerequisite	Basic	ideas En	gineerin	g econor	nics, tota	al quality	manage	ement					
		On completion of this course the student will have clear idea about the demand and											
Objective(s)		evenue analysis, forms and business and function, human resource, financial											
		development, global environment.											
Course Outcome(s)													
At the end of the course the student must be able to know various aspects of													
		emand and revenue analysis.											
CO2	Abilit	Ability to understand different types of business organizations and function.											
CO3	Under	standing	human ı	resource	s and tim	ne manag	gement.						
CO4	Able	to und	erstand	the co	ncept (of prod	uct dev	elopmen	it and o	operatio	on manag	gement	
CO5		tanding t	he busin	ess strat	egy of gl	lobal env	rironmen	ıt					
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1				L		M	L					M	
CO2						M		L	L	M		M	
CO3							M	M	Н		Н	M	
CO4											M	M	
CO5						M	M	M	M	M		M	
					Course	Topic(s)						

INTRODUCTION

Demand and Revenue Analysis - Demand Forecasting - Production Analysis - Cost and Supply Analysis, Price and output Determination - Investment Analysis - Plant Location - Economic Optimization.

FORMS OF BUSINESS AND FUNCTIONS

Types of Business Organisation, Forms - Planning - Organizing - Designing effective organisations - Coordination

HUMAN RESOURCE DEVELOPMENT

Motivating individuals and workgroups - Leadership for Managerial Effectiveness - Team working and Creativity - Managerial Communication - Personal Management - Time Management - Stores Management - Career Planning.

FINANCIAL MANAGEMENT

Product development - Management techniques in product development - Nature of controlling - Operations Management - Just-in-Time.

GLOBAL ENVIRONMENT

Managing World Economic Change - The global environment - Multinational Strategies - Economic Cycles and Director Investment - Change and Organisation Development - Managerial Ethics and Social responsibilities.

REFERENCES

- 1. Harold Koontz& Heinz Weihrich, Essentials of Management, Tata McGraw Hill publishing company Ltd.
- 2. Koontz, Weihrich&Aryasri, Principles of Management, Tata McGraw Hill publishing company Ltd.
 - 3. Tripathi& Reddy, Principles of Management, Tata McGraw Hill publishing company Ltd.

1100002	IN	IDIANI	ECONO	MICDI						L	T	P	C
HSS003	IIV	INDIAN ECONOMIC DEVELOPMENT $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Prerequisite			_					_	ment and ents need	_			
	and bu	and business magazines.											
Objective(s)	To cre	Γο create awareness on the Economic areas of the management. To explore the											
Objective(s)	ideas 1	ideas related to business development.											
Course Outcome(s)													
CO1	Under	Understanding of Indian economics and its effect on economic development and labour force.											
CO2	Abilit	Ability to understand Indian Economic Planning.											
CO3	Analy enterp		ndustrial	develop	ment du	ring the	plannin	g period	&Role of	Public	sector		
CO4	Under	standing	the Role	e of fore	ign trade	-							
CO5		the Issudrial relat		erty and	inequal	ity, Uner	nployme	ent, Risin	g prices a	ınd			
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1								M		M			L
CO2		L						M	M	M			M
CO3		M			L	M	M	M	Н	M	M		
CO4								M	Н	Н	M		L
CO5		M		M	L	M	M	M		Н			M
					Course	Topic(s)						

INDIAN ECONOMIC SCENARIO

Indian economy before and after Independence - National income trends and compositions. Sources of capital formation and savings - Sectoral growth. Demographic trends in India and its effect on economic development - Occupational structure of the labour force.

ECONOMIC PLANNING AND POLICY

Indian Economic Planning, fiscal policy, Monetary Policy, Unemployment in India and other economic policies

INDUSTRIAL DEVELOPMENT

Industry: Industrial development during the planning period - Industrial policies Industrial licensing policy - MRTP Act, FERA and FEMA - Growth and problems of small-scale industries - Role of Public sector enterprises in India's industrialization. Impact of economic reforms on Indian industrial sector after 1991.

FOREIGN TRADE

External Sector - Role of foreign trade. Trends in exports and imports - Composition and direction of India's foreign trade - Balance of payments crisis and the New Economic Reforms - Export promotion measures and the new trade policies - Foreign capital - FDI, aid: Multinational corporations in India

ISSUES

Important Areas of Concern - Poverty and inequality. Unemployment. Rising prices. Industrial relations. Industrial structure and causes of industrial backwardness.

REFERENCES

- 1. Agrawal, A.N. Indian Economy Problems of Developmental Planning, Wiley Eastern Ltd., Calcutta, latest edition.
- 2. Ahluwalia, I.J. and I.M.D. Little (eds.), India's Economic Reforms and Development, Essays in honour of Manmohan Singh, Oxford University Press, New Delhi, 1999.
- 3. Alam, K., Agricultural Development in North East India: Constraints and Prospects, Deep & Deep Publications, New Delhi, 1993.

- 4. Choudhuri, Pramit. Aspects of Indian Economic Development, Lord George Allen & Unwin Ltd., London, 1975.
- 5. Dutt, R.C., The Economic History of India Under Early British Rule, Low Price Publications, Delhi, 1950.
- 6. Dutt, Ruddar and K.P.M. Sundaram, Indian Economy, S. Chand & Co. Ltd., New Delhi, 2001

										L	T	P	C
HSS004		INDU	STRIA	L PSYC	HOLO	GY				3	0	0	3
Prerequisite	Basic i	Basic idea about an organization and its functions.											
		To develop an awareness of the major perspectives underlying the field of Industrial Psychology.											
Objective(s)	To dev	To develop an understanding of how theory in Industrial Psychology is applied in work settings.											
		To develop an understanding for the potential Industrial Psychology has for society and organizations now and in the future.											
Course Outco	me(s)												
CO1	Under	Understanding of key concepts, theoretical perspectives, and trends in industrial psychology.											
CO2	Evalua	ate thoro	ough and	systema	itic comp	petency i	nodel						
CO3	Analy	ze the en	vironme	ent and d	esign a j	ob							
CO4	Create	a better	work en	vironme	nt for be	tter perf	ormance						
CO5	Design	n a perfo	ormance	appraisa	l process	s and for	m						
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1		M						M	M]	M
CO2			M			M					Н		
CO3	L				M	M			M		Н]	M
CO4			M						M	M	M		
CO5				M		M	M					N	M

INTRODUCTION

The role of the psychologist in industry, the field of occupational Psychology - Study of behavior in work situation and applications of Psychological principles to problems of selection, Placement, Counseling and training

Course Topic(s)

DESIGN OF WORK ENVIRONMENTS

Human engineering and physical environment techniques of job analysis, Social environment- Group dynamics in Industry Personal psychology - Selection, training, placement, promotion, counseling, job motivations, job satisfaction .Special Study of problem of fatigue, boredom and accidents.

UNDERSTANDING CONSUMER BEHAVIOUR

Consumer behavior; study of consumer preference, effects of advertising, Industrial morale - the nature and scope of engineering psychology, its application to industry

WORK METHODS

Efficiency at work, the concept of efficiency, the work curve, its characteristics - The work methods; hours of work, nature of work, fatigue and boredom, rest pauses. The personal factors; age abilities, interest, job satisfaction The working environment - noise, illumination atmospheric conditions - Increasing efficiency at work; improving the work methods, Time and motion study, its contribution and failure resistance to time and motion studies, need for allowances in time and motion study.

WORK AND EQUIPMENT DESIGN

Criteria in evaluation of job-related factor, job design, human factors, Engineering information, input processes, mediation processes, action processes, methods design, work space and its arrangement, human

factors in job design. Accident and Safety -The human and economic costs of accidents, accident record and statistics, the causes of accidents situational and individual factors related to accident reduction

REFERENCES

- 1. Tiffin, J and McCormic E.J., Industrial Psychology, Prentice Hall, 6th Edn., 1975.
- 2. McCormic E.J., Human Factors engineering and design, McGraw Hill, 4th Edn., 1976.
- 3. Mair, N.R.F., Principles of Human relations
- 4. Gilmer, Industrial Psychology
- 5. Ghiselli& Brown, Personnel and Industrial Psychology.
- 6. Myer, Industrial Psychology.
- 7. Dunnete, M.D., Handbook of Industrial and Organizational Psychology.
- 8. Blum & Taylor, Industrial Psychology

										L	T	P	C
HSS006		PR	OFESSI	ONAL	ETHICS	8				3	0	0	3
Prerequisite	Basic	Basic idea about management principles.											
	To cre	To create an awareness on Engineering Ethics and Human values.											
Objective(s)		To study the moral issues and decisions confronting individuals and organizations engaged in engineering profession.											
		To study the related issues about the moral ideals, character, policies, and relationships of people and corporations involved in technological activity											
Course Outco	me(s)												
CO1	Under	Understand the engineering code of ethics and be able to apply them as necessary.											
CO2		Understand moral complexities in many engineering activities and decision-making processes											
CO3	-		me of the	e contem	nporary is	ssues in 1	the engir	neering p	rofession	ıs			
CO4	Effect	ively co	mmunic	ate thei	r knowl	edge an	d under	standing	of eng	ineering	g ethics		
CO5	Learn		al issues						how to			n to	
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12
CO1						M		Н	M		M		M
CO2		M				M		Н	L		M		M
CO3		M				M		M			M		L
CO4						M		Н	M		M		
CO5						M		Н	M			I	L

Course Topic(s)

ENGINEERING ETHICS

Functions of Being a Manager – Stock holder and stakeholder management - Ethical treatment of employees - ethical treatment of customers- supply chain management and other issues. **ENGINEERING AS SOCIAL**

EXPERIMENTATION

Senses of Ethics – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professions and Professionalism – Professional ideals and virtues – Theories about right action – Self-interest

- Customs and religion - Use of Ethical Theories.

ENGINEER RESPONSIBILTY FOR SAFETY

Corporate social responsibility - Collegiality and loyalty - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Discrimination.

RESPONSIBILITY AND RIGHTS

Moral imagination, stake holder theory and systems thinking - One approach to management Decision – making Leadership.

GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Sample code of conduct

REFERENCES

- 1. Mike Martin and Roland Schinzinger, Ethics in Engineering, McGraw Hill, New York, 1996
- 2. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 1999.
 - 3. Laura Schlesinger, How Could You Do That: The Abdication of Character, Courage, and C onscience, Harper Collins, New York, 1996.
 - 4. Stephen Carter, Integrity, Basic Books, New York, 1996.
 - 5. Tom Rusk, The Power of Ethical Persuasion: From Conflict to Partnership at Work and in Private Life, Viking, New York, 1993.

										L	T	P C	
HSS008	BASICS OF ECONOMICS									3	0	3	
Prerequisite	Know	Knowledge on Economic Activities and different economic systems.											
Objective(s)	To learn, understand and apply economic theories of International Trade, political economy of International Trade and central issues in International Macro Economics.												
Course Outcome(s)													
CO1	Under	Understand the scope and microeconomics in relation.											
CO2	Understand the law of demand.												
CO3	Evaluate strategy of market demand and supply schedule.												
CO4	Explain the effectiveness of macro-economic policy.												
CO5	Analy	Analyze the balance of payments.											
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1											M	L	
CO2											M	L	
CO3		M			M					M	M	M	
CO4							L				M	M	
CO5	M	L			L							M	

Course Topic(s)

DEFINITION AND SCOPE OF ECONOMICS

Definitions by A. Smith, A. Marshal and L. Robbins, P.Samuelson and their critical examination

- Nature and scope of Economics - Micro-economics in relation to other branches of Economics.

LAW OF DEMAND

Elasticity of demand - price, income and cross, concepts and measurement - Marshallian theory of consumers' behaviour and its critical examination - Indifference curve analysis - Price, income and substitution effects - Giffen goods- Engel curve.

MARKET STRUCTURE

Definition of market. Concepts of product and factor markets. Different types of market: perfect competition, monopoly, imperfect competition, monopolistic, competition and oligopoly. Demand and Supply schedules. Price determination under perfect competition in long and short run. Price determination under monopoly. Discriminating monopoly.

MACRO-ECONOMICS

Meaning, Macro-economic Policy and Its Objectives and Instruments - National Income and Social Accounting - Concepts, components, and measurement - Basic circular flow of income model, Unemployment, trade cycle, Inflation - causes, types, effects and control.

COMMERCIAL AND CENTRAL BANKS

Credit creation, monetary policy and tools - Balance of payments - Items in the balance of payments account, equilibrium in the balance of payments

References

- **1.** Ackley, G., Macroeconomics: Theory and Policy, Macmillan Publishing Company, New York, 1978
 - 2. Gupta, S.B., Monetary Economics, S. Chand & Co., New Delhi, 1994.
 - 3. RuddarDatt and K.P.M.Sundharam, Indian Economy, S.Chand& Company Ltd., New Delhi, 2003.
 - 4. Kindleberger, C.P., R.D. Irwin, International Economics, Home Wood, 1973.
 - 5. Lewis, M.K. and P.D. Mizan, Monetary Economics, Oxford University Press, New Delhi, 2000.
 - 6. Ahuja H.L., Economic Environment of Business, Macroeconomic analysis, S.Chand& Company Ltd., New Delhi, 2005.
 - 7. Gupta, G.S. Macroeconomics, Theory and Applications, Tata McGraw-Hill publishing company Ltd., New Delhi, 2001.
 - 8. D.N.Dewedi, Macroeconomic Theory and policy, Tata McGraw-Hill publishing company Ltd., New Delhi, 2001.
- 9. K.P.M.Sundaram, Money Banking and international Trade, Himalaya Publishing House

HSS010	INTERNATIONAL TRADE AND FINANCE								L 3		P C		
B	Basic Understanding of Functions of Trade and Finance										0	0 3	
Prerequisite													
Objective(s)	The Objective of the course is to teach the basic International Trade and Finance how an												
Objective(s)	organization manages its people effectively.												
Course Outcome(s)													
CO1	Evalua	Evaluate the International Trade and Economic Growth											
CO2	Under	Understanding the export and import policies.											
CO3	Understand the Exchange rates and functions.												
CO4	The student able to understand various documentation and standards for												
CO4	international trade.												
CO5	Under	Understand the export schemes of the government.											
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2
CO1						M		M				Н	
CO2						M		M				Н	
CO3		M				M		M		L	M	M	
CO4								M		Н		Н	
CO5						M		M		M		Н	
	Course Topic(s)												

INTERNATIONAL TRADE

International Trade – Meaning and Benefits – Basis of International Trade – Foreign Trade and Economic Growth – Balance of Trade – Balance of Payment – Current Trends in India – Barriers to International Trade – WTO – Indian EXIM Policy.

EXPORT AND IMPORT FINANCE

Special need for Finance in International Trade – INCO Terms (FOB, CIF, etc.,) – Payment Terms – Letters of Credit – Pre Shipment and Post Shipment Finance – Forfeiting – Deferred Payment Terms – EXIM Bank – ECGC and its schemes – Import Licensing – Financing methods for import of Capital goods.

FOREX MANAGEMENT

Foreign Exchange Markets – Spot Prices and Forward Prices – Factors influencing Exchange rates – The effects of Exchange rates in Foreign Trade – Tools for hedging against Exchange rate variations – Forward, Futures and Currency options – FEMA – Determination of Foreign Exchange rate and Forecasting.

DOCUMENTATION IN INTERNATIONAL TRADE

Export Trade Documents - Financial Documents - Bill of Exchange- Type- Commercial Documents - Performa, Commercial, Consular, Customs, Legalized Invoice, Certification of Origin Certificate Value, Packing List, Weight Certificate, Certificate of Analysis and Quality, Certificate of Inspection, Health certificate. Transport Documents - Bill of Landing, Airway Bill, Postal Receipt, Multimodal Transport Document. Risk Covering Document: Insurance Policy, Insurance Cover Note. Official Document: Export Declaration Forms, GR Form, PP From, COD Form, Softer Forms, Export Certification, Certification of Origin, GSPS – UPCDC Norms

EXPORT PROMOTION SCHEMES

Government Organizations Promoting Exports – Export Incentives : Duty Exemption – IT Concession – Marketing Assistance – EPCG, DEPB – Advance License – Other efforts I Export Promotion – EPZ – EQU – SEZ and Export House.

REFERENCES

- 1. Apte P.G., International Financial Management, Tata McGraw Hill.
- 2. Larceny & Bhattacharya, International Marketing, Sultan Chand & Sons.
- 3. B.M. Wali and AB Kalkumdrikas, Export Management, Sterling Publishers Pvt., Ltd.
- 4. Websites of WTO, World Bank, IMF, Ministry of Commerce, ECGC and EXIM Bank.

HSS011	INFORMATION SYSTEMS FOR MANAGERIAL								L	T	P	C	
H55011	DECISION MAKING										0	0	3
Prerequisite	Basic	Basic Understanding of principles of management.											
Objective(s)	The Objective of the course is to teach the basics about information systems and how an organization manages its people effectively and decision making												
Course Outcome(s)													
CO1	Understanding the framework&information system architecture												
CO2	Understanding the Functional areas, Finance, marketing, production												
CO3	Understand the system development life cycle &structured methodologies												
CO4	Able to implement and control of information system.												
CO5	Evaluate the software engineering qualities.												
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12
CO1						L			M	M			
CO2							M	M			Н		
CO3	M				Н		M			•	L		M
CO4	M					Н	M		Н		M		
CO5	M				M				Н		L		Н
Course Topic(s)													

INTRODUCTION

Information system – establishing the framework – business model – information system architecture – evolution of information systems.

INFORMATION SYSTEM

Functional areas, Finance, marketing, production, personnel – levels, Concepts of DSS, EIS, ES – comparison, concepts and knowledge representation – managing international information system.

SYSTEM DEVELOPMENT

Modern information system – system development life cycle – structured methodologies – designing computer based method, procedures control, designing structured programs.

IMPLEMENTATION AND CONTROL

Testing security – coding techniques – detection of error – validation – cost benefits analysis – assessing the value and risk information systems.

SOFTWARE ENGINEERING

Software engineering qualities – and software quality assurance – software life cycle models – verification and validation.

REFERENCES

- 1. Kenneth C. Laudon and Jane Price Laudon, Management Information systems Managing the digital firm, Pearson Education, Asia.
- 2. Gordon B.Davis, Management Information system: Conceptual Foundations, Structure and Development, McGraw Hill, 1974.
- 3. Joyce J. Elam, Case series for Management Information System, Silmon and Schuster, Custom Publishing, 1996.
- 4. Steven Alter, Information system A Management Perspective, AddisonWesley, 1999.
- 5. James AN O' Brein, Management Information Systems, Tata McGraw Hill, New Delhi, 1999.
- 6. Turban Mc Lean, Wetherbe, Information Technology Management making connection for strategic advantage, John Wiley, 1999.
- 7. Ralph M.Stair and George W.Reynolds, Principles of Information Systems A Managerial Approach Learning, 2001.

						_				L	T]	P C	
HSS013		COST A	ANALY	SIS ANI	D CONT	rol				3	0	3	
Prerequisite	Basic	idea abo	ut Proce	ss Plann	ing and (Cost Esti	mation (MEC319	9)				
Objective(s)	The O	bjective	of the co	ourse is t	o teach	cost estin	nation in	Industri	al.				
Course Outco	me(s)	-											
CO1	Under	standing	the cond	cepts of	costing.								
CO2	Analy	sis the pr	rofit and	margina	ıl costing	5							
CO3	Abilit	y to unde	erstand E	Budgetin	g and Bu	dgetary	control						
CO4	Under	Ability to understand Budgeting and Budgetary control Understand standard costing principles.											
CO5	Evalua	te the ov	erall cos	ting base	ed on act	ivities.							
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1											Н	M	
CO2	M		M		M					M			
CO3	M			M	M			Н	L	M			
CO4											L	M	
CO5	M			M	L			L		M			

Course Topic(s)

INTRODUCTION TO COSTING

Costing, Elements of costing, Types of cost, Preparation of cost sheet.

COST ANALYSIS

Marginal costing, Cost - volume – Profit analysis, Break-Even-Analysis, Break – Even-Chart, Applications.

CONTROL TECHNIQUES

Budgeting and Budgetary control, Types of Budgets, Preparation of purchase Budget, Flexible budgets, Cash Budget, Sales Budget, Materials Budget, Master Budget, Zero based Budgeting.

STANDARD COSTING

Types of Standards, Setting up of standards, Advantages and Criticism of Standard Costing – Control through variances.

ACTIVITY BASED COSTING

Transfer Pricing, Target costing, Life Style Costing, Activity Based Costing (only theory).

REFERENCES

- 1. K.Saxena& C.D. Vashist, Advanced Cost Accounting and Cost Systems, V.Sultan Chand & Sons Publishers.
- 2. S.P. Jain & K. L. Narang, Advances Cost Accounting Kalyani Publishers.
- 3. Cost Management, The Institute of Charted Accountants of India.
- 4. J. Blocher, K. H. Chen, G. Cokins and T. W. Lin., Cost Management: A Strategic Emphasis, Irwin/McGraw-Hill, 3d edition, 2005
- 5. J. Sha, Cases in Cost Management: a Strategic Emphasis by Second Edition. South-Western, 2001

D 0

- 6. BhabatoshBangerjee, Financial Policy & management, Prentice Hall
- 7. Anthony.Dearden&Vancil, Management Control Systems, Irwin

										L	\mathbf{T}	P C		
HSS014		MAF	RKETIN	IG MAN	IAGEM	ENT				3	0	3		
Prerequisite	Funda	amentals	of mark	eting, pr	rinciples	of mana	gement,	consume	er behavio	or.				
Objective(s)		course is mental p				tudents	with a	basic un	derstand	ing of	the			
Course Outco	me(s)													
CO1	Under metho	_	analysi	s of mai	rketing d	lecisions	, consun	ner beha	vior and	market	ing resea	ırch		
CO2	Creati	eativity to product planning and product development.												
CO3	Abilit	Ability to understand the concept of different pricing methods and its objectives.												
CO4	Under	standing	the type	es of mar	keting d	istributio	on.							
CO5						study ski felong le		h will e	ncourage	a posit	ive attitu	ıde to		
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						M					M			
CO2							Н	L			L			
CO3	M					L		Н	M		Н	M		
CO4							L		Н	Н				
CO5						L					M	L		
					Course	Topic(s)		·	·				

MARKETING

Meaning -concept -functions -marketing Planning & implementation marketing Programmes - Marketing environment - Market Segmentation and consumer behaviour - Influencing factors, Decision process - Marketing mix - Marketing department.

PRODUCT

Meaning - Product planning - policies - positioning - New product development Product life cycle - BCG Matrix-branding. Packing, labeling.

PRICING

Pricing objectives – Setting and modifying the price – Different pricing method Product line pricing and new product pricing

DISTRIBUTION

Nature of Marketing channels - Types of Channel flows - Channel functions - Channel co-operation, conflict and competition - Direct Marketing Telemarketing, Internet shopping. **PROMOTION**

Promotion Mix - Advertisement - Message - copy writing - Advertisement budgeting - Measuring advertisement effectiveness - Media strategy - sales promotion - Personal selling, publicity and direct marketing

REFERENCE BOOKS

- 1. Philip Kotler, Marketing Management- Analysis Planning and Control, Prentice Hall of India, New Delhi.
- 2. Cundiff, Still &Govoni, Fundamentals of Modern Marketing, Prentice Hall of India, New Delhi.
- 3. Ramaswamy. V S & Namakumari. S, Marketing Management-Planning Implementation and Control, Macmillan Business Books, 2002.
- 4. Jobber, Principles and Practice of Marketing, McGraw-Hill.

1100015		MANA	GEME	NT CON	CEPTS	AND T	ECHNI	QUES		L			C	
HSS015	D .	Knowledge about managerial information. Course introduces students to the basic role of the manager in modern business. If the topics discussed are: paradigm shifts; environmental factors affecting decision-g; ethics/social responsibility; and planning organizing, motivating and controlling zational resources. Ty environmental issues as they impact management and develop strategies to adapt to environments and also it clearly describes and discusses about the elements of effective ement. Ty and explain issues involved in managing a diverse workforce and conduct necessary to address these issues, then apply the planning, organizing and control processes were necessary. Ty, discuss and/or describe various theories related to the development of leadership motivation techniques, teamwork and effective communication function techniques, teamwork and effective communication and then analyze information by using both human and technological resources effectively as a team member through group projects, case studies and problem is.												
Prerequisite			_											
Objective(s)	Amon makin	g the to g; ethic	pics dis s/social	scussed a	are: para	adigm sl	hifts; en	vironme	ntal facto	ors affe	cting d	ecis	ion-	
Course Outco	me(s)													
CO1	these													
CO2	resear	dentify and explain issues involved in managing a diverse workforce and conduct necessary esearch to address these issues, then apply the planning, organizing and control processes wherever necessary.												
CO3		•							-	nt of lea	adership	١		
CO4													nore	
CO5	Work analys		ely as a	team r	nember	through	group 1	projects,	case stu	dies ar	nd probl	em		
Mapping of C	Os with	POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1						L	Н	L			Н			
CO2						Н	Н		M		M			
CO3						L		L	Н	M	Н			
CO4										Н				
CO5						L	M		Н		L			
					Course	Topic(s)							
DEVELOPM	1ENT O	F MAN	AGEMI	ENT TH			,							

Scientific Management Movement, Administrative Movement, Human- Relations Movement, Decision-Science Movement, Behavioral Movement, Systems Movement, Contingency Movement

ESSENTIALS OF PLANNING

Objectives, goals, Programmed Decisions and Un programmed Decisions; Decision-Making, Creativity in Decision-Making, Forecasting and Strategy to Formulation.

EFFECTIVE ORGANIZING

Span of Control, Departmentation, Authority; Responsibility, Bureaucracy and Adhocracy; Group Dynamics

REALITIES OF ORGANIZATIONAL LIFE

Organizational Politics, Organizational Power, Organizational Conflict

COMMUNICATION & CONTROL

Communication Process Evaluation, Control Process, Qualities of a Good Control System, Management Audit, Human – Offset Accounting, Cost Benefit Analysis.

REFERENCE BOOKS

- 1. Harold Koontz & Heinz Weihrich, Essentials of Management, Tata McGraw Hill publishing company Ltd.
- 2. Koontz, Weihrich&Aryasri, Principles of Management, Tata McGraw Hill publishing company Ltd.
- 3. Tripathi& Reddy, Principles of Management, Tata McGraw Hill publishing company Ltd.
- 4. Hampton, Management, Tata McGraw Hill publishing company Ltd.
- 5. L.M.Prasad, Principles of Management.

HSS016		ORGANIZATIONAL PSYCOLOGY								L		P C	
										3	0	3	
Prerequisite						gement.							
	and or	ganizati	onal leve	els	C,				vidual, g	•			
		-			ganizatio	nal beha	vior and	manage	ment pra	ctices b	y examir	ning	
Objective(s)			principle										
				-		nd throug							
	_	ve your as of exp	-	work ef	ffectively	y with pe	ople wh	o have d	ifferent v	alues, b	ackgrou	nds	
Course Outco	me(s)												
CO1		Understanding of personnel assessment and selection, training effectiveness and now organizational identity and culture can affect employee and organizational functioning.											
CO2		Analyze the theories of Organizational Behaviour and personality factors.											
CO3		ze these zational		and em	pirical e	vidence	help to	understa	nd conte	mporary	I		
CO4	Apply	theories	to pract	ical prob	olems in	organiza	tions in	a critical	manner				
CO5			•	•									
Mapping of C	Os with	POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L						M		L		Н		
CO2		L						Н	M		M		
CO3		L						M			Н	L	
CO4							M		L		M	Н	
CO5													
					Course	e Topic(s	s)						

FOCUS AND PURPOSE

Definition, need and importance of organizational Behaviour – nature and scope – frame work.

INDIVIDUAL BEHAVIOUR

Personality – types – factors influencing personality – theories – learning – types of learners – learning theories – organizational Behaviour modification. Attitudes – characteristics – components – formation – measurement. Perceptions – importance – factors influencing perception – interpersonal perception.

GROUP BEHAVIOUR

Organization structure – formation – groups in organizations – influence – group dynamics – emergence of informal leaders and working norms – group decision making techniques – interpersonal relations – communication – control.

POWER

Leadership styles – theories – leaders Vs managers – sources of power – power centers – power and politics.

DYNAMICS OF ORGANIZATIONAL BEHAVIOURS

Organizational climate – factors affecting organizational climate – importance. Job satisfaction – determinants – measurements – influence on behavior. Organizational change – importance – stability Vs change – proactive Vs reaction change – the change process – resistance to change – managing change. Organizational development – characteristics – objectives – team building. Organizational effectiveness – perspective – effectiveness Vs efficiency – approaches – the time dimension – achieving organizational effectiveness.

REFERENCES

CO₁

- 1. Stephen P.Robins, Organisational Behavior, Prentice Hall of India, 9th edition, 2001.
- 2. Hellriegel, Slocum and Woodman, Organisational Behavior, South-Western, Thomson Learning, 9th edition, 2001.
- 3. Schermerhorn, hunt and Osborn, Organisational behavior, John Wiley, 7th edition, 2001.
- 4. JitS.Chand, Organisational Behavior, Vikas publishing House Pvt. Ltd. 2nd edition, 2001.
- 5. Fred Luthans, Organisational Behavior, McGraw Hill Book Co., 1998.
- 6. New Strom & Davis, Organisationalbehaviour, McGraw Hill, 2001.
- 7. Jaffa Harris and Sandra Hartman, Organisational Behaviour, Jaico, 2002.

									L	T	P	C
	INTER	NATIO	NAL E(CONOM	IICS				3	+		3
Know	ledge on	Econom	ic Activ	ities in I	ndia							
Know	ledge of	n Influe	nce of	Governr	ment inf	luence i	in contro	olling ec	onomic	effects		
Know	ledge on	differen	t econon	nic syste	ms.							
To lea	rn, unde	rstand ar	d apply	economi	ic theorie	es of Inte	rnationa	1 Trade				
To und	derstand	the polit	ical ecor	nomy of	Internati	onal Tra	de					
To lea	rn and u	nderstan	d the cer	ıtral issu	es in Inte	ernationa	al Macro	Economi	ics			
me(s)												
Under	stand tra	ade laws	, and the	e nationa	al and in	ternation	nal instit	utions ce	entral to	trade.		
Evalua	ate econo	omic inte	gration	and conf	licts acro	ss count	tries.					
Evalua	ate strate	gic trade	policies	from th	e perspe	ctive of 1	nations a	nd compa	anies.			
Explai	in how e	xchange	rate is d	etermine	d in the	long run	and the	short run.				
Analy	ze interp	ret a nat	ion's bala	ance of p	ayments	and rela	ited acco	unts.				
Os with	POs											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	F	PO12
	Know Know To lea To und To lea me(s) Under Evalua Evalua Explai Analy Os with	Knowledge on Knowledge on Knowledge on To learn, unde To understand To learn and u me(s) Understand tra Evaluate econo Evaluate strate Explain how e Analyze interp	Knowledge on Econom Knowledge on Influe Knowledge on differen To learn, understand an To understand the polit To learn and understand me(s) Understand trade laws Evaluate economic inte Evaluate strategic trade Explain how exchange Analyze interpret a nati	Knowledge on Economic Activ Knowledge on Influence of Knowledge on different econom To learn, understand and apply To understand the political econ To learn and understand the cer me(s) Understand trade laws, and the Evaluate economic integration a Evaluate strategic trade policies Explain how exchange rate is d Analyze interpret a nation's bala Os with POs	Knowledge on Economic Activities in I Knowledge on Influence of Governa Knowledge on different economic syste To learn, understand and apply economic To understand the political economy of To learn and understand the central issue me(s) Understand trade laws, and the national Evaluate economic integration and conf Evaluate strategic trade policies from th Explain how exchange rate is determined Analyze interpret a nation's balance of policy.	Knowledge on different economic systems. To learn, understand and apply economic theories To understand the political economy of International To learn and understand the central issues in Interme(s) Understand trade laws, and the national and in Evaluate economic integration and conflicts across Evaluate strategic trade policies from the perspetable Explain how exchange rate is determined in the Analyze interpret a nation's balance of payments Os with POs	Knowledge on Economic Activities in India Knowledge on Influence of Government influence in Knowledge on different economic systems. To learn, understand and apply economic theories of Inter To understand the political economy of International Tra To learn and understand the central issues in International me(s) Understand trade laws, and the national and internation Evaluate economic integration and conflicts across count Evaluate strategic trade policies from the perspective of a Explain how exchange rate is determined in the long run Analyze interpret a nation's balance of payments and rela Os with POs	Knowledge on Economic Activities in India Knowledge on Influence of Government influence in control Knowledge on different economic systems. To learn, understand and apply economic theories of Internationa To understand the political economy of International Trade To learn and understand the central issues in International Macro me(s) Understand trade laws, and the national and international instit Evaluate economic integration and conflicts across countries. Evaluate strategic trade policies from the perspective of nations a Explain how exchange rate is determined in the long run and the Analyze interpret a nation's balance of payments and related acco Os with POs	Knowledge on Economic Activities in India Knowledge on Influence of Government influence in controlling economic Knowledge on different economic systems. To learn, understand and apply economic theories of International Trade To understand the political economy of International Trade To learn and understand the central issues in International Macro Economic me(s) Understand trade laws, and the national and international institutions central economic integration and conflicts across countries. Evaluate economic integration and conflicts across countries. Evaluate strategic trade policies from the perspective of nations and compact Explain how exchange rate is determined in the long run and the short run. Analyze interpret a nation's balance of payments and related accounts. Os with POs	Knowledge on Economic Activities in India Knowledge on Influence of Government influence in controlling economic Knowledge on different economic systems. To learn, understand and apply economic theories of International Trade To understand the political economy of International Trade To learn and understand the central issues in International Macro Economics me(s) Understand trade laws, and the national and international institutions central to Evaluate economic integration and conflicts across countries. Evaluate strategic trade policies from the perspective of nations and companies. Explain how exchange rate is determined in the long run and the short run. Analyze interpret a nation's balance of payments and related accounts. Os with POs	INTERNATIONAL ECONOMICS Knowledge on Economic Activities in India Knowledge on Influence of Government influence in controlling economic effects Knowledge on different economic systems. To learn, understand and apply economic theories of International Trade To understand the political economy of International Trade To learn and understand the central issues in International Macro Economics me(s) Understand trade laws, and the national and international institutions central to trade. Evaluate economic integration and conflicts across countries. Evaluate strategic trade policies from the perspective of nations and companies. Explain how exchange rate is determined in the long run and the short run. Analyze interpret a nation's balance of payments and related accounts. Os with POs	INTERNATIONAL ECONOMICS Knowledge on Economic Activities in India Knowledge on Influence of Government influence in controlling economic effects. Knowledge on different economic systems. To learn, understand and apply economic theories of International Trade To understand the political economy of International Trade To learn and understand the central issues in International Macro Economics me(s) Understand trade laws, and the national and international institutions central to trade. Evaluate economic integration and conflicts across countries. Evaluate strategic trade policies from the perspective of nations and companies. Explain how exchange rate is determined in the long run and the short run. Analyze interpret a nation's balance of payments and related accounts. Os with POs

M

CO2				M	L	Н			
CO3					L			L	
CO4						M	L		
CO5	L				Н			M	Н

INTRODUCTION

The Traditional Theory of International Trade, The Basic Trade Model, Heckscher-Ohlin- Samuelson Model, Effects of Tariffs & Quotas, Theory of Factor Movements - New Theories of International Trade and Industrial Policies.

EXCHANGE RATE & BALANCE OF PAYMENT

The Balance of Payments and National Accounts, Determinants of Exchange Rates The Exchange-Rate Regime Choice and a Common Currency Area, International Debt and Currency Crises.

INTERNATIONAL REGULATORY AUTHORITY

Political Economy of Trade Disputes, the FTA and the WTO -The role of the IMF and other International Financial Organizations. Reasons for Protection World Trade, International Movements of Capital - The Balance of Trade and Other Measures of International Transactions. Export and import policies.

INTERNATIONAL MACROECONOMICS

European Monetary Unification and the Euro - Preferential Trading Arrangements and the NAFTA International Policies for Economic Development, Trade Outsourcing and Off shoring

REFERENCE BOOKS

- N. Bhagwati, A. Panagariya and T. N. Srinivasan, Lectures on International Trade, MIT Press, 2 edition, 1998.
- 2. M. Obstfeld and K. Rogoff, Foundation of International Macroeconomics, McGraw-Hill, 1996
- 3. Romer, D., Advanced Macroeconomics, McGraw Hill, 1996.

										L	T	P C		
HSS018		COM	1MUNI	CATIO	N SKILI	LS				3	0	0 3		
Prerequisite	Englis	h Techn	ical com	municat	ion –II(F	ISS102)								
Objective(s)	The of	ojective (of this co	ourse is t	o improv	e the co	mmunic	ation ski	lls.					
Course Outco	me(s)													
CO1	to the student's major focus.													
CO2		Demonstrate oral and written communication skills expected of a future professional inthe field.												
CO3	Demo	nstrate c	ommuni	cation r	esearch s	kills exp	pected o	f a futur	e profess	ional in	the fiel	d.		
CO4	Demo	nstrate	understa	nding o	f ethica	l values	central	to the	commu	nication	discipl	ine.		
CO5		nstrate tl settings.	he ability	y to inte	grate coi	nmunica	ition and	busines	s scholar	ship for	applica	tion in		
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						M				Н	M			
CO2										Н				
CO3										Н		L		
CO4								Н	M	Н				
CO5							L			Н	M			
					Course	Topic(s))							

COMMUNICATION IN BUSINESS

Systems approach, forms of business communication, management and communication, factors facilitating communication.

COMMUNICATION PROCESS

Interpersonal perception, selective attention, feedback, variables, listening barriers to listening, persuasion, attending and conducting interviews, participating in discussions, debates and conferences, presentation skills, paralinguistic features, oral fluency development.

BUSINESS CORRESPONDENCE

Business letter. Memos, minutes, agendas, enquiries, orders, sales letters, notice, tenders, letters of application, letter of complaints.

TECHNICAL REPORTS

Format, Choice of vocabulary, coherence and cohesion, paragraph writing, organization.

PROJECT REPORTS

Project proposal, project reports, and appraisal reports.

- 1. Sharan J. Genrson and Steven M. Gerson, Technical Writing Process and Product, Pearson Education, 2000.
- 2. Raymond V.Lesikar, John D. Pettit and Mary E.Flatley, Lesikass Basic Communication, Tata McGraw Will, 8th Edition, 1999.
- 3. Stevel. E. Pauley, Daniel G.Riordan, Technical Report Writing Today, AITBS Publishing & Distributors, India 5th edition, 2000.
- 4. Robert L.Shurter, Effective letters in business, Third Ed., 1983.
- 5. McGraith, Basic Managerial Skills for all Prentice Hall of India, 6th Edition, 2002.
- 6. Halliday, M.A.KyR. Hasan, Cohesion in English, Longman, London, 1976.

TICCO10		ΩD	ED ATI	MC DE	CE A D.C	TT				L	\mathbf{T}	P C	
HSS019		OP	EKAII	ONS RE	SEARC	Н				3	3 0 0 ics. Il be given to		
Prerequisite	Stude	nts shoul	d have tl	ne logica	l thinkin	g ability	and bas	ic skills i	in mathen	natics.			
Objective(s)		course w formula				al mode	eling. A	strong e	emphasis	will be	given to)	
Course Outco													
CO1	Identi	fy and di	stinguisl	n the skil	ls to bui	ld their o	own form	nulations					
CO2	Evalua	ate to exp	pand exi	sting for	mulation	ıs							
CO3	,	nalyze and evaluate the critical formulas											
CO4	Under formul		ow to	choose	an appr	opriate	solution	techniq	ue for a	ı given	l		
CO5	Identi	fy the op	timal so	lution fro	om the g	iven forn	nulation						
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		M			M	M		Н			L		
CO2		L	Н	M	M								
CO3	M	Н	M		Н								
CO4		M	Н	M	Н								
CO5	M	Н	Н	Н	Н								

INTRODUCTION TO LINEAR PROGRAMMING

Introduction to applications of operations research in functional areas of management - Linear Programming - formulation, solution by graphical and simplex methods (Primal - Penalty, Two Phase), Special cases - Dual simplex method.

TRANSPORTATION MODELS AND ASSIGNMENT MODELS

Transportation Models (Minimising and Maximising Cases) – Balanced and unbalanced cases – Initial Basic feasible solution by N-W Corner Rule, Least cost and Vogel's approximation methods - Check for optimality - Solution by MODI / Stepping Stone method - Cases of degeneracy - Transshipment Models - Assignment Models (Minimising and Maximising Cases)

- Balanced and Unbalanced Cases - Solution by Hungarian and Branch and Bound Algorithms - Travelling Salesman problem - Crew Assignment Models.

INTEGER LINEAR PROGRAMMING AND GAME THEORY

Solution to pure and mixed integer programming problem by Branch and Bound and cutting plane algorithms - Game Theory - Two person Zero sum games - Saddle point, Dominance Rule, graphical and LP solutions.

REPLACEMENT MODELS AND DECISION THEORY

Replacement Models-Individuals replacement Models (With and without time value of money) – Group Replacement Models - Decision making under risk – Decision trees – Decision making under uncertainty.

PROJECT MANAGEMENT METHOD AND SIMULATION

PERT / CPM – Drawing the network, computation of processing time, floats and critical path. Resource leveling techniques - Application of simulation techniques for decision making.

- 1. Kalavathy S, Operations Research, Vikas Publishing House, Second Edition, third Reprint 2004
- 2. Paneerselvam R., Operations Research, Prentice Hall of India, Fourth Print, August 2003.
- 3. Tulsian P.C, Vishal Pandey, Quantitative Techniques (Theory and Problems), Pearson Education, Asia, First Indian Reprint 2002.

		L	T	P	C
HSS020	HUMAN RESOURCE MANAGEMENT	3	0	0	3
Dwawaguigita	Knowledge on General Management				
Prerequisite	Legal Aspects of Business				
	The Objective of the course is to teach the basic principles of strategic huma	n			
Objective(s)	resource Management—how an organization acquires, rewards, motivates, u	ses, a	and		
	generally manages its people effectively.				
Course Outco	me(s)				
	Synthesize the role of human resources management as it supports the success	ss of			
CO1	the Organization including the effective development of human capital as an	ager	nt for		
	Organizational change				
CO2	Applying the knowledge of laws that impact behavior in relationships between				
CO2	employers and employees that ultimately impact the goals and strategies of	the o	rganiz	ation	
	Understand the role of employee benefits and compensation as a critical				
CO3	component of Employee performance, productivity and organizational				
	effectiveness.				
CO4	Show evidence of the ability to analyze, manage and problem solve to deal v	vith			
CO4	the challenges and complexities of the practice of collective bargaining				
CO5	Demonstrate knowledge of practical application of training and employee				
003	Development as it impacts organizational strategy and competitive advantage	e			

Mapping of C	Os with	POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							L		Н	Н		M
CO2						Н					Н	M
CO3							M				M	Н
CO4						M			M			M
CO5						L	M				L	M

INTRODUCTION

Functions of a human resources manager - recruitment and selection processes interview methods.

HR- EVALUATION AND DEVELOPMENT

Performance appraisal, Training and development, disciplinary procedures, collective bargainingand employee welfare.

TRENDS IN HRM

The recent methods and trends in HRM with a few case studies in the context of globalization.

STRATEGIC ROLE OF HUMAN RESOURCE MANAGEMENT

Job analysis Personnel planning and recruiting Employee testing and selection, interviewing candidates, Appraising performance

CAREER AND COMPENSATION

Managing careers Compensation Benefits and services Labor relations and collective bargaining

- 1. Decenzo and Robbins, Human Resource Management, Wiley, 6th edition, 2001.
- 2. BiswajeetPattanayak, Human Resource Management, Prentice Hall of India, 2001.
- 3. Eugene McKenna and Nic Beach, Human Resource Management, Pearson Education.
- 4. Dessler, Human Resource Management, Pearson Education Limited, 2002.
- 5. Mamoria C.B and Mamoria S., Personnel Management, Himalaya Publishing.
- 6. Wayne Cascio, Managing Human Resources, McGraw-Hill, 1998.
- 7. Ivancevich, Human Resource Management, McGraw-Hill, 2002.

										\mathbf{L}	T	P C	\mathcal{Z}
HSS022	B	ANKIN	G THE	ORY AN	ND PRA	CTICE				3	0	0 3	}
Prerequisite	Basic	Underst	anding o	f Function	ons of M	anageme	ent						
Objective(s)	To int	roduce s	students	to theor	ies and 1	research	at indivi	idual, gr	oup and l	oanking	g levels		
Objective(s)	To im	prove yo	ur abilit	y to wor	k with ar	nd throug	gh other j	people.					
Course Outco	me(s)	-		-									
CO1	Evalua	ate the C	entral B	anking f	unctions	, Reserve	Bank co	ontrol ov	er banks				
CO2	Under	Understanding of personnelcustomer accounts, duties and relationship											
CO3	Under	Inderstand the RBI control over loans and Securities											
CO4	Stude	Student able to understand banking Agencies services											
CO5			underst	and the	deficienc	y in ban	king serv	ices.					
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1						Н						N	M
CO2						Н]	M
CO3						Н		Н				I	Н
CO4						M]	M
CO5						M		L]	M
					Course	Topic(s)						

EVOLUTION OF BANKING SYSTEM

Central Banking functions, Reserve Bank control over banks.

BANKER - CUSTOMER RELATIONSHIP

Bank as borrowers, customer accounts, duties of paying and collecting bankers.

LENDING BY BANKS

RBI control over loans and advances, Securities for loans.

AGENCY SERVICES BY BANKS

Banker as bailee, safe deposit vaults, credit cards.

CONSUMERS OF BANKING SERVICES Protection against deficiency in banking services.

REFERENCES

- 1. M.L.Tannan, Tannan's Banking Law and Practice in India, India Law House, New Delhi, 1997
- 2. S.N.Gupta, The Banking Law in theory and Practice Vol. I & II, Universal Law Publishing
- 3. M.S.Parthasarathy, Banking Law-Leading Indian Cases, N.M.Tripathi, 1985.
- 4. L.C.Goyle, Law of Banking and Bankers, Eastern Law House, 1995.

										L	T	P C					
HSS023	EN'	TREPR	ENEUR	SHIP D	EVELO	PMENT	Γ			3	0	3					
Prerequisite	Basic	Knowle	dge abou	ut busine	ss mana	gement											
Objective(s)	introd assess	uced to	eleme conomic	nts of develop	success pment p	ful ent otential	repreneu of smal	rship, c I busine	opportuni ess, alter	ty ide	3 0 0 s are identification ive forms of when the second s						
Course Outco	me(s)																
CO1					1	ship and	its close	relation	ship with	Students are rtunity identification ar alternative forms of wordsyle. with Government at both D9 PO10 PO11 PO H N							
CO2		erstand the concept of entrepreneurship and its close relationship with rprise and owner-management. understand the Business environment, Central and State Government strial Policies and Regulations of International Business. erstand the concepts of innovation and creativity and the roles that both in entrepreneurship and business development.															
CO3								l the role	s that bot	th							
CO4	To eva	aluate the	e Effecti	ve mana	gement o	of Busine	ess Units) <u>.</u>									
CO5																	
Mapping of C	Os with	POs															
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
CO1						M		L	Н			M					
CO2						Н					Н	M					
CO3						M			Н		Н	M					
CO4						Н		L		Н	Н	M					
CO5																	

Course Topic(s)

ENTREPRENEURIAL COMPETENCE

Entrepreneurship concept – Entrepreneurship as a Career – Entrepreneur – Personality Characteristics of Successful. Entrepreneur – Knowledge and Skills Required for an Entrepreneur.

ENTREPRENEURIAL ENVIRONMENT

Business Environment - Role of Family and Society - Entrepreneurship Development Training and Other Support Organisational Services - Central and State Government Industrial Policies and Regulations - International Business.

BUSINESS PLAN PREPARATION

Sources of Product for Business - Prefeasibility Study - Criteria for Selection of Product - Ownership - Capital - Budgeting Project Profile Preparation - Matching Entrepreneur with the

Project - Feasibility Report Preparation and Evaluation Criteria.

LAUNCHING OF SMALL BUSINESS

Finance and Human Resource Mobilization Operations Planning - Market and Channel Selection

- Growth Strategies - Product Launching.

MANAGEMENT OF SMALL BUSINESS

Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units. Effective Management of small Business.

REFERENCES

- 1. Hisrich, 'Entrepreneurship', Tata McGraw Hill, New Delhi, 2001.
- 2. P. Saravanavel, 'Entrepreneurial Development', Ess Pee kay Publishing House, Chennai 1997.
- 3. S.S.Khanka, 'Entrepreneurial Development', S.Chand and Company Limited, New Delhi, 2001.
- 4. Prasama Chandra, Projects 'Planning, Analysis, Selection, Implementation and Reviews', Tata McGraw-Hill Publishing Company Limited 1996.
 - 5. P.C.Jain (ed.), 'Handbook for New Entrepreneurs', EDII, Oxford University Press, New Delhi, 1999

										L	T 1	P C	
HSS024		INDU	ISTRIA	L PSYC	HOLO	GY				3	0	3	
Prerequisite			_		ons of In nent subj		Manage	ment. Ha	ving				
	To in levels		students	to psyc	hology t	heories	and rese	arch at i	ndividua	al, group	and ind	ustrial	
Objective(s)		elp stude ological			industria	l behavi	or and r	nanagem	ent prac	ctices by	examin	ing	
	To In	prove y	our abili	ty to wor	rk with a	nd throu	gh other	people.					
		areas of expertise											
Course Outco	urse Outcome(s)												
CO1	Unders	standing	of Persp	ective of	f Industri	al Econo	omics						
CO2	Analys	is of Ma	rkets and	d Market	Structu	re							
CO3	Goals	of Firms	[/] Industry	and Ma	rket Perf	formance	2						
CO4	Apply	theories	toVertic	cal Integ	ration an	d Divers	sification	1					
CO5													
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1						L			M		L	M	
CO2		L M M											
CO3		M M H M											
CO4	L					M				M		Н	
CO5													
					Course	Topic(s)						

A Perspective of Industrial Economics

The Analysis of Markets and Market Structure Goals of Firms/Industry and Market Performance Vertical Integration and Diversification

Technical Progress and Issues of Public Policy

- 1. Gupta, G.S. Macroeconomics, Theory and Applications, Tata McGraw-Hill publishing company Ltd., New Delhi, 2001.
- 2. Samuelson, Paul A., and Nordhaus, W.D., Economics, Tata MGraw-Hill publishing company Ltd., New Delhi 2004.
- 3. D.N.Dewedi, Macro economic Theory and policy, Tata McGraw-Hill publishing company Ltd., New Delhi, 2001.
 - 4. K.P.M.Sundaram, Money Banking and international Trade, Himalaya Publishing House.

										L	T I	PC	
HSS031		ENG	LISH A	DVANC	CE LEVI	EL				3	0 () 3	
Prerequisite	Comr	nunicati	on Skills	(HSS01	.8)								
Objective(s)	Acqu apprec		f higher	order L	anguage	skills: S	style, Idi	om, Nua	nce. Li	terature	;		
Course Outco	me(s)												
CO1				ng level									
CO2	Deve	elop skills in reading and oral.											
CO3													
CO4													
CO5													
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1						L		L		Н		M	
CO2						M		L		Н		M	
CO3													
CO4										·			
CO5													

Writing: Essays, Reports, Reading: Select Literary Texts: Prose, Poetry, Drama, Short Stories, Book Review, Oral Skills: Presentations; Discussions

- 1. Cambridge Advanced Learners' Dictionary 2005.
- 2. Palgrave's Golden Treasury: Ed. Palgrave, Frances Taylor London: Oxford University Press, 1861.
- 3. 20th Century English Literature, London: Penquin 1992.
- 4. The Garden of Forking Paths and other stories: Harris, V.C. New Delhi: Oxford University Press, 2002.
- 5. Discussion Materials: Film / News Clippings, Plays etc.

ONE CREDIT COURSE

D C

										L	\mathbf{T}	PC	,	
MECX001		NON D	ESTRU	CTIVE	TESTIN	IG				3	0	0 3		
Prerequisite	Basic	knowled	ge in me	echanica	erization	and defe	ects							
		e end of												
	nonde	structive	testing	techniqu	ies for u	se in de	sign, ma	ınufactuı	ring and	industri	al servic	e. Yo	u	
Objective(s)		ble to kn												
Objective(s)		and the												
	NDT	problem	and det	ermine	which te	chnique	is best	suited fo	or the jol	o, how	you app	ly suc	ch	
	techni	que and	which in	formatio	on the tec	chnique v	vill prov	ide.						
Course Outcon	ne(s)													
CO1	Under	rstanding	of proce	esses and	l techniq	ues used	in multi	ple NDT	Discipl	ines				
CO2	Analy	ze the no	on destru	ctive tes	ting for v	various i	ndustrial	problem	ıs					
CO3		apply nondestructive testing knowledge to effectively utilize problem solving												
		lls as it relates to the operation of equipment in the industry												
CO4		ge and in												
CO5		op skills		relate to	the saf	e operat	ion in t	he nond	estructiv	e testin	g			
		ry standa	ards.											
Mapping of CO				T	T	T		Т	Т		Т			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO		
CO1		M				CO1		M				CO	Э	
001												1		
CO2		Н	Н		M	CO2		Н	Н		M	CO	Э	
002												2		
CO3										CO	Э			
				**		go:				**		3		
CO4				Н		CO4				Н		CO	J	
			7.7			005			7.7			4		
CO5			Н			CO5			Н			CO	J	
												5		

INTRODUCTION AND RADIOGRAPHY

Introduction to NDT – need – advantages and limitations Radiography – Sources – IR192, cobalt 60 – X-ray film – processing – testing methods – film interpretation

Course Topic(s)

ULTRASONIC TESTING

A,B,C scan, immersion Testing, Normal and Angle Probe Testing

MAGNETIC PARTICLE TESTING Methods – particles -

wet, dry and fluorescent DYE PENETRANT TESTING

Surface preparation – Testing procedure - types of penetrant

OTHER NDT METHODS

Thermography, Image processing TOFD and Phased Array - leak testing - Halogen, Helium

- 1. Baldev Raj, Practical Radiology, Narosa Publishing House, 2004
- 2. R2 Non-Destructive Test and Evaluation of Materials by J Prasad, C. G. Krishnadas Nair, McGraw Hill R3 Education (India) Private Limited; 2 edition
- 3. R4 Non-Destructive Testing Techniques by, New Age International Pvt Ltd Publishers; Revised edition (1 December 2010)

4. R5. ASM Handbook, Volume 17, Non destructive testing and Quality control, ASM, 1976

		L	T	P	C					
MECX00 2	ADVANCED WELDING PROCESSES	3	0	0	3					
Prerequisite	Basic knowledge in manufacturing process, materials characterization a drawing.	nd ge	eometr	ical						
Objective(s)	This course aims to understand the concept of advanced welding techniques. To know the welding geometry, welding joint and its application. To apply the recent welding techniques in various manufacturing engineeri To enable the students, how to rectify the welding defects with lat	ng ar		ogy.						
Course Outco	me(s)									
CO1	Know the welding principle, safety equipments, handling procedures									
CO2	Ability to understand the welding geometry, perform the welding joint a design geometry construction and know the type of weld joints	as pe	er							
CO3	Know the principles and application of advanced fusion welding processes									
CO4	Understand the principle and application of advanced solid state welding									
CO5	Analyze the welding defects with latest technology and know how to prevent the defects									
Mapping of C	Os with POs									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		M	Н		M				Н			
CO2		Н	M		Н						M	
CO3	L	M				M						
CO4			Н	M				Н				
CO5		M							M		M	

Course Topic(s)

INTRODUCTION AND SAFETY

Introduction to Welding – importance – recent technologies, Safe handling of machines and gases – tools and equipments

GEOMETRY

Welding Geometry – grooves – types – weld joints

ADVANCED FUSION WELDING PROCESSES

Electron beam welding, laser beam welding, plasma arc welding, Interpulse TIG welding, Cold metal transfer welding

ADVANCED SOLID STATE WELDING PROCESSES Diffusion Bonding,

Friction stir welding, friction stir spot welding **DEFECTS**

Welding defects – types – causes – remedial action

TEXT BOOKS

1. William A Bowditch, Welding Technology Fundamentals, Good Heart Willcox Publishers, 2006.

- 1. Howard B Cary, "Modern Welding technology", Prentice Hall, New Jersy, 2002.
- 2. William A Bowditch, Welding Technology Fundamentals, Good Heart Willcox Publishers, 2006.
- 3. AWS Welding Handbook, Vol 1 & Vol 2, AWS New York, 1997.

										L	T]	P C		
MECX003		CN	C PRO	GRAMI	MING					3	0	3		
Prerequisite			out the n											
									odes of op					
							ming in	terms of	various s	teps ne	eded to b	e taken		
Objective(s)			a succes								_			
						(G codes	s) and m	iscellane	ous funct	ions (M	l			
		as used	in CNC	program	ımıng.									
Course Outco		deviation of the hogic proceedures and concents of programming get up and energical												
CO1		nderstand the basic procedures and concepts of programming, set up and operation												
		Ca CNC Machining Center entify and understand the basic programming codes												
CO2	Identi	fy and ur	nderstand	the bas	ic progra	umming	codes							
CO3	Identi	fy and de	efine the	function	s of the	CNC ma	chine co	ntrol						
CO4	Set up	the CNO	C machir	ning cent	er for m	anufactu	ring sim	ple parts						
CO5	Manut	facture s	imple pa	rts on the	e CNC n	nachining	g center							
Mapping of C	Os with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		Н	M								M			
CO2	L H H													
CO3	H M H													
CO4	Н	H H H M M												
CO5	L													

CNC MACHINES

Numerical control – definition – components of NC systems, Development of NC, DNC, CNC, and adaptive control systems, Working principle of a CNC system, features and advantages of CNC machine Introduction to CNC systems – fanuc oi, siemens 840D, Heidenhein, current trends in programming, Human Machine Interface software – siemens – fanuc systems

Course Topic(s)

CNC HARDWARE SYSTEM

CNC system elements, Drives, Slide ways, Feedback devices, ATC and Tool Magazines, and Machine Control Units

CNC PART PROGRAMMING

Part program structure, CNC program procedure – coordinate system, Sequence number, preparatory functions and G codes, miscellaneous functions and M codes, NC dimensioning – reference points – machine zero, work zero, tool zero and tool offsets, Types of motion control: point-to-point, paraxial and contouring Part Program – tool information – speed – feed data – interpolations, Macro – subroutines – canned cycles - Mirror images – thread cutting, Sample programs for lathe and milling, Conversational automatic programming, and APT programming Introduction to Computer assisted part programming – EdgeCAM, Master CAM etc.,

- 1. CAD/CAM/CIM, R.Radhakrishnan, S.Subramanian, V.Raju, 2nd, 2003, New Age International Pvt. Ltd.
- 2. CAD/CAM, Mikell P.Groover, Emory Zimmers Jr. Indian Reprint Oct 1993, Prantice Hall of India Pvt., Ltd

	L	T	P	C

										3	0	0 3	
Prerequisite									processes				
	To un	derstand	the vario	ous proc	essing te	chniques	of plast	ic materi	ials.				
	To le	arn the	fundam	entals a	ind com	pression	moldin	g and t	ransfer n	nolding	g of the	moset	t
Objective(s)	plastic	es.											
	To lea	arn the b	asic pro	cessing o	of therm	oplastics	by injec	ction mo	olding, ext	trusion	and blo	W	
	mould	ling.	-			-							
Course Outco	me(s)												
CO1	Know	Know the basics of plastic materials											
CO2	Under	Understand the concept of moulding process											
CO3		To take up responsibilities in production, testing, design and marketing in the plastics industries and contribute for the growth of industry.											
CO4	1110,0,50	2100 0110	• 0110110 0	101 111	810 11 111	01 1110000	<i>v</i> 2 <i>j</i> .						
CO5													
Mapping of C	Os with	POs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	Н	M									
CO2	L						Н				M		
CO3	M	M	Н		Н		M						M
CO4													
CO5													
1					COURSO	Taniala	`						

INJECTION MOULDING

Terminology – Process description- Theory of injection moulding – Design and consideration - moulding cycle — Trouble shooting operations. Types Injection unit & Elements of plastication process – Classification of screw – Screw design – Process control – Clamping unit.

BLOW MOULDING

Terminology – Basis in blow moulding - Process variables – Injection & stretch blow moulding – Single and multi layer. Extrusion blow moulding – Extrusion heads, moulding process controls for blow moulding – Machine, process and product controls. Thermoforming –Thermoforming machinery – Heating of sheet – Heating cycle - Stretching – Concept – Heat balance – Shrinkage – Trimmingoperations.

EXTRUSION AND COMPRESSION MOULDING

Principle – Types of Extruders – Single screw and twin-screw extruders – Metering – Screw Design

- process control variables - Types of dies -Extrusion of Pipes- Extrusion profiles - Extrusion line for cable industry - Blown films - Flat film - Cast film - sheet film.

Types and procedure machinery and equipment moulding of thermoplastics – moulding of Thermosets - Transfer moulding advantages – Limitations-Rotational moulding – types of machines moulds – materials.

- 1. Manas Chanda, Salil.K.Roy, Plastic Technology handbook. CRC Press, Third edition 1998.
- 2. V. Rosato Kluwer, Injection moulding handbook. Academic Publishers Boston 2nd edition 1995
- 3. Richard C. Progelhof James. L. Throne, Polymer Engineering Principles, Hanser Publisher Munich 1993.
- 4. N.P. Charemisinoff & P.N. Chere, Handbook of applied Polymer processing Technology, Marcel Dekker Inc, NY 1996.
- 5. Herbert Rees, Understanding of Injection moulding Technology, Hanser Publications, Munich 1994
- 6. Vishu Shah, "Handbook of Plastics testing and Failure Analysis" 3rd edition. John Wiley, NY, 2007

ONLINE COURSE

	01 MATERIAL SELECTION AND DESIGN								L	T	P	\mathbf{C}		
MECO001	MA	ATERIA	L SEL	ECTION			3	0	0	3				
Prerequisite	Sound	l of knov	vledge ii	n Mecha	nical co	mponent	s and its	Compos	site produ	ıct.				
Objective(s)	princi functi To Le	ples inv	olved strengthuse stand	in evalu require	ating thements.	he shape	e and	dimensio	gn Proces ons of a alogues f	compo	onent to	sat	tisfy	
Course Outcor														
CO1	Select	Selection of materials for machine components suitable for applications												
CO2	Know	the mat	erial pro	perty										
CO3	Under	stand th	e differe	nt mater	ial struc	ture.								
CO4	Basic	knowled	lge on co	omposite	materia	ıls.								
CO5														
Mapping of CO	Os with I	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	O12	
CO1		L	M	M	L									
CO2		H L M												
CO3			M	M	L									
CO4		L M H												
COS														

Course Topic(s)

INTRODUCTION TO MECHANICAL SYSTEM DESIGN

Materials and Design ,Evolution of Engineering Materials, Evolution of Engineering Materials, Material Resource in Indian Context, Classification of Materials, Case Study: Materials Selection for Vehicle Body,

MECHANICAL PROPERTIES OF MATERIALS

Overview of Material Properties, Surface Properties of Materials, Other Functional Properties of Materials.

BASIC STRUCTURE OF MATERIALS

Material Properties; The Role of Crystal Structure, Material Properties; The Role of Crystal Structure, Metals and Metallic Structure, METALLIC ALLOYS, CERAMICS & GLASSES ,Introduction to Polymeric Materials, Phases and microstructure of Polymers, Polymers for Mechanical Design

OVERVIEW OF COMPOSITE MATERIALS

Reinforcement Fibres for Composite Materials, Special type of Composites Metal Matrix Composite, Ceramic Matrix Composite, Design of Laminated Composite

THE DESIGN PROCESS

Material Selection using Ashby Method - Case Study, Multiple Constraints in material selection, Multiple Objectives, Role of Materials in Shaping the Product Character, Case Studies, The Role of Shape Factors in Material Selection, Design Case Studies - Guitar String Design

- 1. Kenneth G.Budinski and Michael K.Budinski, Engineering Materials, Prentice-Hall of India Private Limited, 4th Indian Reprint 2002
- 2. Ronald Gibson, Principles of Composite Material Mechanics, Tata McGraw Hill, New Delhi, 1994.
- 3. Agarwal, B.D., and Broutman, L.J., Analysis and Performance of Fiber Composites, John Wiley and Sons, New York, 1980

MECO002 MICRO AND SMART SYSTEMS						L	T 1	P C						
MECO002		MICRO AND SMART SYSTEMS 3 0 0												
Prerequisite	Basic	knowled	lge in M	icro con	trol syst	em								
Objective(s)	To int	roduce a	nd unde	rstand th	ne Conce	epts & D	esign of	Micro c	ontrol sy	stems.				
Course Outcon	ne(s)													
CO1	systems; explain stereo lithography process and applications													
CO2	Expla: proces													
CO3	Demo	monstrate solid ground curing principle and process												
CO4		ss LENS lefine vii							system in	n medio	cal			
CO5	Descr		uct deve	lopment	, concep	tual desi	gn and o	classify 1	rapid prot	otyping	3			
Mapping of CO)s with I	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L		Н	M	M									
CO2	L L L													
CO3				Н										
CO4														
CO5		H M M												

INTRODUCTION

Glimpses of Microsystems; scaling effects, Smart materials and systems: an overview, Microsensors Microactuators, Microsystems: some examples, Examples of smart systems: structural health monitoring and vibration control

Course Topic(s)

MICROFABRICATION PROCESSES

Structure of silicon and other materials, Silicon wafer processing; Thin-film deposition, Lithography, wet etching and dry etching, Bulk micromachining and Surface micromachining, Waferbonding; LIGA and other moulding techniques, Soft lithography and polymer processing, Thick-film processing; Low temperature co-fired ceramic processing, Smart material processing

MECHANICS OF SOLIDS

Stresses and deformation: bars and beams, Microdevice suspensions: lumped modelling, Residual stress and stress gradients, Poisson effect; Anticlastic curvature; examples of micromechanical structures, Thermal loading; bimorph effect, Dealing with large displacements; in-plane and 3D elasticity equations, Vibrations of bars and beams, Gyroscopic effect, Frequency response; damping; quality factor, Basic micro-flows for damping calculation,

FINITE ELEMENT METHOD

Types of numerical methods for solving partial differential equations, What is finite element method? Variational principles, Weak form; shape functions, Isoparametric formulation and numerical integration, Implementation of the finite element method, FEM for piezoelectrics, **ELECTRONICS AND**

PACKAGING

Semiconductor devices: basics, OpAms and OpAmp circuits, Signal conditioning for microsystems devices, Control and Microsystems, Vibration control of a beam, Integration of microsystems and microelectronics, Packaging of Microsystems: why and how, Flip-chip, ballgrid, etc.; reliability, Case-study 1 (Pressure sensor), Case-study 2 (Accelerometer)

MECHANICS OF SOLIDS

Stresses and deformation: bars and beams, Microdevice suspensions: lumped modelling, Residual stress and stress gradients, Poisson effect; Anticlastic curvature; examples of micromechanical structures, Thermal loading; bimorph effect, Dealing with large displacements; in-plane and 3D elasticity equations, Vibrations of bars and beams, Gyroscopic effect, Frequency response; damping; quality factor, Basic

micro-flows for damping calculation,

REFERENCES

- 1. S.D. Senturia, Microsustem Design, Kluwer Academic Publishers, 2001.
 - 2. Tai-Ran Hsu, MEMS & Microsystems Design and Manufacture, McGraw Hill, 2002.
- 3. V.K. Varadan, K.J. Vinoy, and S. Gopalakrishnan, Smart Material Systems and MEMS: Design and Development Methodologies, Wiley, 2006.

MECOARS	FINITE ELEMENT ANALYSIS OF SOLIDS AND FLUIDS - I										_	P	C	
MECO003										3	0	0	3	
Prerequisite									ering Me					
Objective(s)	the str	udents to nt techno ary con	o formul ology, ii	late the ncluding	design p	oroblems discreti	into FE zation, p	EA, to in	nentals. antroduce ial interpion of the	basic a olation,	spects of	atio	n of	
Course Outcom														
CO1		ntify mathematical model for solution of common engineering problems.												
CO2	Formu	ormulate simple and complex problems into finite elements.												
CO3				al, prob										
CO4				x equati tion by p	-	ifferent	methods	by app	olying ba	sic law	s in			
CO5														
Mapping of CO	s with P	Os												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	PO12	
CO1	Н	M	Н											
CO2	M			<u> </u>				L						
CO3	Н	M	Н	Н	M					M				
CO4	Н	I L L												
CO5														
					Course '	Topic(s)								

Introduction to finite element analysis process, Analysis of solids/structures and fluids, the principle of virtual work, The finite element formulation, Finite element solution process, Demonstration on using ADINA, Nonlinear finite element analysis of solids and structures, Heat transfer analysis, Finite element analysis of heat transfer and incompressible fluid flow, Physical explanation of Gauss elimination, Solution of dynamic equilibrium equations, Demonstration on finite element methods in ADINA, Modeling for dynamic analysis and solution, Wave propagation response, Solution of the generalized eigen value problem, Solution of $K\phi = \lambda M\phi$

REFERENCES

Bathe, K. J. Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe, 2007. ISBN: 9780979004902

	MECHANICAL ASSEMBLY AND ITS ROLE IN PRODUCT	L	T	P	C
MECO004	DEVELOPMENT	3	0	0	3
Prerequisite	Sound knowledge of fundamentals of Mechanical components and its prod	uct.			
Objective(s)					

	To know the mechanical behavior of engineering materials, such as metals, ceramics, polymers, and composites.											
	To understand the mechanical properties and testing of the materials and also find out the suitability of the materials for different applications											
Course Outcome(s)												
CO1	Have the knowledge of fundamental mechanical behavior of engineering materials											
CO2	Know fundamental response of engineering materials to loading conditions											
CO3	Understand elastic and plastic deformation.											
CO4	Knowledge of materials strengthening mechanisms, including work hardening, boundary strengthening, and solution and precipitation hardening.											
CO5	Understand and solve metallurgical and materials selection and design problems.											
Mapping of COs with POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M				M	M	Н					
CO2		M	L	M	M		L					
CO3		M	Н	L								
CO4	M		L	L	M							
CO5	Н	Н	M	L								

Introduction, Logistics, Context, History, Assembly in the Small - Step-by-step Process - Assembly Motions and Forces, Assembly in the Small-Rigid Part Mating Theory and RCC, Student project descriptions due, Key Characteristics, Mathematical Models of Assemblies, Feature-based Modeling of Assemblies, Constraint in Assembly, Variation Build up in Assemblies, Assembly Sequence Analysis, Algorithms, and Software, The Datum Flow Chain, Assembly in The Large - Basic Issues, Economics, Step-by-step Process, Product Architecture, Flexibility, Design for Assembly - Theory and Examples, AITL System Design Issues: Kinds of Assembly Lines and Equipment, Production Volume, Cycle Times, Assembly in The Large: Workstation Design Issues, Assembly System Design Techniques and Simulation, Economic Analysis of Assembly Systems, Flexible Manufacturing Systems, Outsourcing, and Supply Chain Management, 767 Wing Case Study

REFERENCES

Whitney, Daniel E. Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development. New York, NY: Oxford University Press, 2004. ISBN: 9780195157826.